Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 178-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note we give estimates of small deviation probabilities of a sum $\sum_{j\ge1}\lambda_jX_j$, where $\{\lambda_j\}$ are positive numbers and $\{X_j\}$ are i.i.d. positive random variables, satisfying mild assumptions at zero and infinity.
@article{ZNSL_2014_431_a10,
     author = {L. V. Rozovsky},
     title = {Small deviation probabilities for weighted sum of independent random variables with a~common distribution, decreasing at zero not faster than a~power},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--185},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a10/}
}
TY  - JOUR
AU  - L. V. Rozovsky
TI  - Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 178
EP  - 185
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a10/
LA  - ru
ID  - ZNSL_2014_431_a10
ER  - 
%0 Journal Article
%A L. V. Rozovsky
%T Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 178-185
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a10/
%G ru
%F ZNSL_2014_431_a10
L. V. Rozovsky. Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 178-185. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a10/

[1] F. Aurzada, “On the lower tail probabilities of some random sequences in $l_p$”, J. Theor. Probab., 20 (2007), 843–858 | DOI | MR | Zbl

[2] F. Aurzada, “A short note on small deviations of sequences of i.i.d. random variables with exponentially decreasing weights”, Statist. Probab. Letters, 78 (2008), 2300–2307 | DOI | MR | Zbl

[3] A. A. Borovkov, P. S. Ruzankin, “On small deviations of series of weighted random variables”, J. Theor. Probab., 21 (2008), 628–649 | DOI | MR | Zbl

[4] L. V. Rozovsky, “Small deviations of series of weighted i.i.d. non-negative random variables with a positive mass at the origin”, Statist. Probab. Letters, 79 (2009), 1495–1500 | DOI | MR | Zbl

[5] L. V. Rozovskii, “O malykh ukloneniyakh summ vzveshennykh polozhitelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 384, 2010, 212–224

[6] L. V. Rozovskii, “O malykh ukloneniyakh ryadov nezavisimykh neotritsatelnykh sluchainykh velichin s gladkimi vesami”, Teoriya veroyatn. i ee primen., 58:1 (2013), 133–151 | DOI | Zbl

[7] R. Davis, S. Resnick, “Extremes of moving averages of random variables with finite endpoint”, Ann. Probab., 19 (1991), 312–328 | DOI | MR | Zbl

[8] A. A. Borovkov, P. S. Ruzankin, “Small deviations of series of independent positive random variables with weights close to exponential”, Siber. Adv. Math., 18:3 (2008), 163–175 | DOI | MR | Zbl

[9] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Probab., 25 (1997), 424–442 | DOI | MR | Zbl

[10] T. Dunker, M. A. Lifshits, W. Linde, “Small deviations of sums of independent variables”, High Dimensional Probability, Progress in Probability, 43, Birkhäuser, Basel, 1998, 59–74 | MR | Zbl

[11] L. V. Rozovskii, “O veroyatnostyakh malykh uklonenii summ nezavisimykh polozhitelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 341, 2007, 151–167 | MR | Zbl

[12] L. V. Rozovskii, “Malye ukloneniya vzveshennoi summy nezavisimykh polozhitelnykh sluchainykh velichin s obschim raspredeleniem, ubyvayuschim v nule ne bystree stepeni”, Teoriya veroyatn. i ee primen. (to appear)

[13] L. V. Rozovsky, “Small deviation probabilities of weighted sums under minimal moment assumptions”, Statist. Probab. Letters, 86:1 (2014), 1–6 | DOI | MR | Zbl

[14] N. C. Jain, W. E. Pruitt, “Lower tail probability estimates for subordinators and nondecreasing random walks”, Ann. Probab., 15:1 (1987), 76–101 | DOI | MR

[15] L. V. Rozovsky, “Comparison theorems for small deviations of weighted series”, Probab. Math. Statist., 32:1 (2012), 117–130 | MR | Zbl

[16] L. V. Rozovsky, “Small deviation probabilities of weighted sums with fast decreasing weights”, Probab. Math. Statist. (to appear)