A stochastic model for the Lotka–Volterra system with cross-diffusion
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 9-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose two approaches that allow to construct a probabilistic representation of a generalized solution of the Cauchy problem for a system of quasilinear parabolic equations. The system under consideration presents a population dynamics model for a prey-predator population. We construct two types of stochastic problem associated with this parabolic system that give the way to derive the required probabilistic representation.
@article{ZNSL_2014_431_a1,
     author = {Ya. I. Belopolskaya},
     title = {A stochastic model for the {Lotka{\textendash}Volterra} system with cross-diffusion},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--36},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a1/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - A stochastic model for the Lotka–Volterra system with cross-diffusion
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 9
EP  - 36
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a1/
LA  - ru
ID  - ZNSL_2014_431_a1
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T A stochastic model for the Lotka–Volterra system with cross-diffusion
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 9-36
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a1/
%G ru
%F ZNSL_2014_431_a1
Ya. I. Belopolskaya. A stochastic model for the Lotka–Volterra system with cross-diffusion. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 9-36. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a1/

[1] L. Chen, A. Jüngel, “Analysis of a multi-dimensional parabolic population model with strong cross-diffusion”, SIAM J. Math. Anal., 36 (2004), 301–322 | DOI | MR | Zbl

[2] G. Galiano, M. Garzron, A. Jüngel, “Analysis and numerical solution of a nonlinear cross-diffusion model arising in population dynamics”, Rev. Real Acad. Ciencias, Serie A. Mat., 95 (2001), 281–295 | MR | Zbl

[3] S. Xu, “Existence of global solutions for a predator-prey model with cross-diffusion”, Electron. J. Diff. Equations, 6 (2008), 1–14 | MR

[4] A. Jüngel, “Diffusive and nondiffusive population models”, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, 2010, 397–425 | DOI | MR | Zbl

[5] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[6] H. Kunita, “Stochastic flows acting on Schwartz distributions”, J. Theor. Probab., 7:2 (1994), 247–278 | DOI | MR | Zbl

[7] H. Kunita, “Generalized solutions of stochastic partial differential equations”, J. Theor. Probab., 7:2 (1994), 279–308 | DOI | MR | Zbl

[8] Ya. Belopolskaya, W. Woyczynski, “Generalized solutions of nonlinear parabolic equations and diffusion processes”, Acta Appl. Math., 96 (2007), 55–69 | DOI | MR | Zbl

[9] Ya. Belopolskaya, W. Woyczynski, “Generalized solutions of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stochast. Dynam., 12:1 (2012), 1–31 | MR | Zbl

[10] Ya. Belopolskaya, “Markov processes associated with fully nondiagonal systems of parabolic equations”, Markov Process. Rel. Fields, 20:3 (2014), 452–478

[11] Ya. Belopolskaya, “Probabilistic counterparts for strongly coupled parabolic systems”, Springer Proc. Math. Stat. Topics in Statistical Simulation, 114 (2014), 33–42 | MR

[12] E. Pardoux, S. Peng, “Backward Stochastic Differential Equations and Quasilinear Parabolic Partial Differential Equations”, Lect. Notes CIS, 176, Springer-Verlag, 1992, 200–217 | MR

[13] J. Fontbona, S. Méléard, “Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium”, J. Math. Biology, 2014, April, 26 pp. | DOI

[14] P. Protter, Stochastic Integration and Differential Equations, Springer, 2010

[15] A. Matoussi, M. Xu, “Sobolev solution for semi-linear PDE with obstacle under monotonicity condition”, Electron. J. Probab., 13 (2008), 1035–1067 | DOI | MR | Zbl

[16] Ya. I. Belopolskaya, “Pryamye-obratnye stokhasticheskie uravneniya, svyazannye s sistemami kvazilineinykh parabolicheskikh uravnenii i teoremy sravneniya”, Zap. nauchn. semin. POMI, 412, 2013, 15–46