Integral models of algebraic tori over number fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 114-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An algebraic torus can be defined over an arbitrary field but if a ground field has an arithmetic type one can additionally consider schemes over the ring of integers of this field. These schemes are linked to the original tori and called integral models. Néron model and Voskresenskiĭ model are most well-known among them. This paper is dedicated to the research of main integral models of algebraic tori over number fields and to the comparison of their properties. A particular family of the maximal algebraic tori without an affect of semisimple groups of type $B_n$ is taken into account as a polygon for the realization of the previously researched constructions.
@article{ZNSL_2014_430_a9,
     author = {M. V. Grehov},
     title = {Integral models of algebraic tori over number fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--135},
     year = {2014},
     volume = {430},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a9/}
}
TY  - JOUR
AU  - M. V. Grehov
TI  - Integral models of algebraic tori over number fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 114
EP  - 135
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a9/
LA  - ru
ID  - ZNSL_2014_430_a9
ER  - 
%0 Journal Article
%A M. V. Grehov
%T Integral models of algebraic tori over number fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 114-135
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a9/
%G ru
%F ZNSL_2014_430_a9
M. V. Grehov. Integral models of algebraic tori over number fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 114-135. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a9/

[1] V. E. Voskresenskii, Biratsionalnaya geometriya lineinykh algebraicheskikh grupp, MTsNMO, M., 2009, 408 pp.

[2] S. Yu. Popov, Standard Integral Models of Algebraic Tori, Preprintreihe des SFB 478, Geometrische Strukturen in der Mathematik, 2003, 31 pp.

[3] V. P. Platonov, A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel, Nauka, Gl. red. fiz.-mat. lit., M., 1991, 656 pp. | MR

[4] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Springer-Verlag, Berlin–Heidelberg, 1990, 325 pp. | MR | Zbl

[5] Ch. Ching-Li, Yu. Jiu-Kang, Congruences of Néron models for tori and the Artin conductor, National Center for Theoretical Science, National Tsing-Hua University, Hsinchu, Taiwan, 1999, 30 pp.

[6] Dzh. Kassels, A. Frëlikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969, 484 pp. | MR

[7] V. E. Voskresenskii, B. E. Kunyavskii, B. Z. Moroz, “O tselykh modelyakh algebraicheskikh torov”, Algebra i analiz, 14:1 (2002), 46–70 | MR | Zbl

[8] M. V. Bondarko, “Ideals in an extension of a number field as modules over the ring of integers in a ground field”, Proceedings of the Session in analytic number theory and Diophantine equations, Bonner Math. Schriften, 360, eds. D. R. Heath-Brown, B. Z. Moroz, 2003 | MR | Zbl

[9] Dzh. Khamfris, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003, 216 pp.

[10] Yu. Yu. Krutikov, “Affinnye predstavleniya trekhmernykh algebraicheskikh torov”, Vestnik Samarskogo gosudarstvennogo universiteta, estestvennonauchnaya seriya, 2007, no. 7(57), 92–106

[11] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, Gl. red. fiz.-mat. lit., M., 1985, 504 pp. | MR | Zbl

[12] Q. Liu, D. Lorenzini, Special fibers of Néron models and wild ramification, Preprint, 1999, 40 pp. | MR