Intersection and incidence distances between parabolic subgroups of a reductive group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 103-113

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a reductive algebraic group and let $P,Q\subset\Gamma$ be a pair of parabolic subgroups. We consider here some properties of intersection and incident distances \begin{gather*} d_\mathrm{in}(P,Q)=\max\{\dim P,\dim Q\}-\dim (P\cap Q),\\ d_\mathrm{inc}(P,Q)=\min\{\dim P,\dim Q\}-\dim (P\cap Q) \end{gather*} (if $P,Q$ are Borel subgroups, both numbers coincide with the Tits distance $\operatorname{dist}(P,Q)$ in the building $\Delta(\Gamma)$ of all parabolic subgroups of $\Gamma$). In particular, if $\Gamma=\mathrm{GL}(V)$ and $P=P_v$, $Q=P_u$ are stabilizers in $\mathrm{GL}(V)$ of linear subspaces $v,u\subset V$ we obtain the formula $$ d_\mathrm{in}(P,Q)=-d^{\,2}+a_1d+a_2 $$ where $d=d_\mathrm{in}(v,u)=\max\{\dim v,\dim u\}-\dim(v\cap u)$ is the intersection distance between the subspaces $v,u$, and where $a_1, a_2$ are integers expressed in terms of $\dim V,\dim v,\dim u$.
@article{ZNSL_2014_430_a8,
     author = {N. Gordeev and U. Rehmann},
     title = {Intersection and incidence distances between parabolic subgroups of a reductive group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {430},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/}
}
TY  - JOUR
AU  - N. Gordeev
AU  - U. Rehmann
TI  - Intersection and incidence distances between parabolic subgroups of a reductive group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 103
EP  - 113
VL  - 430
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/
LA  - en
ID  - ZNSL_2014_430_a8
ER  - 
%0 Journal Article
%A N. Gordeev
%A U. Rehmann
%T Intersection and incidence distances between parabolic subgroups of a reductive group
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 103-113
%V 430
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/
%G en
%F ZNSL_2014_430_a8
N. Gordeev; U. Rehmann. Intersection and incidence distances between parabolic subgroups of a reductive group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 103-113. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/