Intersection and incidence distances between parabolic subgroups of a reductive group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 103-113
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a reductive algebraic group and let $P,Q\subset\Gamma$ be a pair of parabolic subgroups. We consider here some properties of intersection and incident distances
\begin{gather*}
d_\mathrm{in}(P,Q)=\max\{\dim P,\dim Q\}-\dim (P\cap Q),\\
d_\mathrm{inc}(P,Q)=\min\{\dim P,\dim Q\}-\dim (P\cap Q)
\end{gather*}
(if $P,Q$ are Borel subgroups, both numbers coincide with the Tits distance $\operatorname{dist}(P,Q)$ in the building $\Delta(\Gamma)$ of all parabolic subgroups of $\Gamma$). In particular, if $\Gamma=\mathrm{GL}(V)$ and $P=P_v$, $Q=P_u$ are stabilizers in $\mathrm{GL}(V)$ of linear subspaces $v,u\subset V$ we obtain the formula
$$
d_\mathrm{in}(P,Q)=-d^{\,2}+a_1d+a_2
$$
where $d=d_\mathrm{in}(v,u)=\max\{\dim v,\dim u\}-\dim(v\cap u)$ is the intersection distance between the subspaces $v,u$, and where $a_1, a_2$ are integers expressed in terms of $\dim V,\dim v,\dim u$.
@article{ZNSL_2014_430_a8,
author = {N. Gordeev and U. Rehmann},
title = {Intersection and incidence distances between parabolic subgroups of a reductive group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--113},
publisher = {mathdoc},
volume = {430},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/}
}
TY - JOUR AU - N. Gordeev AU - U. Rehmann TI - Intersection and incidence distances between parabolic subgroups of a reductive group JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 103 EP - 113 VL - 430 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/ LA - en ID - ZNSL_2014_430_a8 ER -
N. Gordeev; U. Rehmann. Intersection and incidence distances between parabolic subgroups of a reductive group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 103-113. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a8/