A~note on localization of pretriangulated categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 67-73

Voir la notice de l'article provenant de la source Math-Net.Ru

For a localising class $\mathcal S$ of morphisms in a pretriangulated category $\mathcal D$, a weak version of a sufficient condition that guarantees carrying the structure of pretriangulated category onto the localisation $\mathcal{D[S}^{-1}]$ is proposed. Moreover, we get a similar weakness of a sufficient condition in the context of triangulated categories.
@article{ZNSL_2014_430_a6,
     author = {A. I. Generalov},
     title = {A~note on localization of pretriangulated categories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {430},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a6/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - A~note on localization of pretriangulated categories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 67
EP  - 73
VL  - 430
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a6/
LA  - ru
ID  - ZNSL_2014_430_a6
ER  - 
%0 Journal Article
%A A. I. Generalov
%T A~note on localization of pretriangulated categories
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 67-73
%V 430
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a6/
%G ru
%F ZNSL_2014_430_a6
A. I. Generalov. A~note on localization of pretriangulated categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 67-73. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a6/