A note on localization of pretriangulated categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 67-73
Cet article a éte moissonné depuis la source Math-Net.Ru
For a localising class $\mathcal S$ of morphisms in a pretriangulated category $\mathcal D$, a weak version of a sufficient condition that guarantees carrying the structure of pretriangulated category onto the localisation $\mathcal{D[S}^{-1}]$ is proposed. Moreover, we get a similar weakness of a sufficient condition in the context of triangulated categories.
@article{ZNSL_2014_430_a6,
author = {A. I. Generalov},
title = {A~note on localization of pretriangulated categories},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--73},
year = {2014},
volume = {430},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a6/}
}
A. I. Generalov. A note on localization of pretriangulated categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 67-73. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a6/
[1] J.-L. Verdier, “Catégories dérivées”, Lect. Notes Math., 569, 1977, 262–311 | DOI | MR | Zbl
[2] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque, 239, 1996 | MR | Zbl
[3] R. Virk, The octahedron axiom, Preprint, 2009
[4] A. I. Generalov, “Lokalizatsiya predtriangulirovannykh kategorii”, Algebra i analiz, 11:3 (1999), 20–52 | MR | Zbl
[5] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry, v. 1, Nauka, M., 1988 | MR