Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 61-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the structure of the $\mathcal O_K[G]$-module $F(\mathfrak m_M)$, where $M/L$, $L/K$, $K/\mathbb Q_p$ are finite Galois extensions ($p$ is fixed prime number), $G=\mathrm{Gal}(M/L)$, $\mathfrak m_M$ is a maximal ideal of $M$ and $F$ is a formal Lubin–Tate group law over $\mathcal O_K$ for a prime element $\pi$.
@article{ZNSL_2014_430_a5,
     author = {S. V. Vostokov and I. I. Nekrasov},
     title = {Lubin--Tate formal module in a~cyclic unramified $p$-extension as {Galois} module},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {430},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - I. I. Nekrasov
TI  - Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 61
EP  - 66
VL  - 430
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/
LA  - ru
ID  - ZNSL_2014_430_a5
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A I. I. Nekrasov
%T Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 61-66
%V 430
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/
%G ru
%F ZNSL_2014_430_a5
S. V. Vostokov; I. I. Nekrasov. Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 61-66. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/