Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 61-66
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we describe the structure of the $\mathcal O_K[G]$-module $F(\mathfrak m_M)$, where $M/L$, $L/K$, $K/\mathbb Q_p$ are finite Galois extensions ($p$ is fixed prime number), $G=\mathrm{Gal}(M/L)$, $\mathfrak m_M$ is a maximal ideal of $M$ and $F$ is a formal Lubin–Tate group law over $\mathcal O_K$ for a prime element $\pi$.
@article{ZNSL_2014_430_a5,
author = {S. V. Vostokov and I. I. Nekrasov},
title = {Lubin--Tate formal module in a~cyclic unramified $p$-extension as {Galois} module},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--66},
publisher = {mathdoc},
volume = {430},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/}
}
TY - JOUR AU - S. V. Vostokov AU - I. I. Nekrasov TI - Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 61 EP - 66 VL - 430 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/ LA - ru ID - ZNSL_2014_430_a5 ER -
S. V. Vostokov; I. I. Nekrasov. Lubin--Tate formal module in a~cyclic unramified $p$-extension as Galois module. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 61-66. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a5/