Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 53-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K$ be a multidimensional local field with characteristic different from characteristic of its residue field, $c$ be a unit of $K$ and $F_c(X,Y)=X+Y+cXY$ be a polynomial formal group, which defines formal module $F_c(\mathfrak M)$ over maximal ideal of ring of integers in $K$. Assume that $K$ contains group of the roots of isogeny $[p^m]_c(X)$, which we denote by $\mu_{F_c,m}$. Let $\mathcal H$ be the multiplicative group of Cartier curves and $\mathcal H_c$ be a formal analogue of the module $F_c(\mathfrak M)$. In the current work we construct formal symbol $\{\cdot,\cdot\}_c\colon K_n(\mathcal H)\times\mathcal H_c\to\mu_{F_c,m}$ and check its basic properties. This is the first step in construction of the explicit formula for the Hilbert symbol.
@article{ZNSL_2014_430_a4,
     author = {S. V. Vostokov and V. V. Volkov and M. V. Bondarko},
     title = {Explicit form of {Hilbert} symbol for polynomial formal groups over multidimensional local {field.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--60},
     year = {2014},
     volume = {430},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a4/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - V. V. Volkov
AU  - M. V. Bondarko
TI  - Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 53
EP  - 60
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a4/
LA  - ru
ID  - ZNSL_2014_430_a4
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A V. V. Volkov
%A M. V. Bondarko
%T Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 53-60
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a4/
%G ru
%F ZNSL_2014_430_a4
S. V. Vostokov; V. V. Volkov; M. V. Bondarko. Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 53-60. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a4/

[1] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR, Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[2] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl

[3] I. B. Fesenko, S. V. Vostokov, Local Fields and Their Extensions, Second Edition, Amer. Math. Soc., Providence, R.I., 2002 | MR | Zbl

[4] F. Lorenz, S. Vostokov, “Honda Groups and Explicit Pairings on the Modules of Cartier Curves”, Contemp. Math., 300 (2002), 143–170 | DOI | MR | Zbl

[5] S. V. Vostokov, F. Lorents, “Yavnaya formula simvola Gilberta dlya grupp Khondy v mnogomernom lokalnom pole”, Matem. sb., 194:2 (2003), 3–36 | DOI | MR | Zbl

[6] S. V. Vostokov, “Yavnaya konstruktsiya teorii polei klassov mnogomernogo lokalnogo polya”, Izv. AN SSSR, Ser. matem., 49:2 (1985), 283–308 | MR | Zbl

[7] S. V. Vostokov, “Sparivanie Gilberta v polnom mnogomernom pole”, Tr. MIAN, 208, Nauka, Fizmatlit, M., 1995, 80–92 | MR | Zbl

[8] T. B. Belyaeva, S. V. Vostokov, “Simvol Gilberta v polnom pole. I”, Zap. nauchn. semin. POMI, 281, 2001, 5–34 | MR | Zbl

[9] S. S. Afanaseva, B. M. Bekker, S. V. Vostokov, “Simvol Gilberta v mnogomernykh lokalnykh polyakh dlya formalnoi gruppy Lyubina–Teita”, Zap. nauchn. semin. POMI, 400, 2012, 20–49 | MR

[10] S. V. Vostokov, V. V. Volkov, “Yavnaya forma simvola Gilberta dlya mnogochlennykh formalnykh modulei”, Algebra i analiz, 26:5 (2014), 125–141