Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 32-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper I sketch two new variations of the method of decomposition of unipotents in the microweight representations $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$. To put them in context, I first very briefly recall the two previous stages of the method, an $\mathrm A_5$-proof for $\mathrm E_6$ and an $\mathrm A_7$-proof for $\mathrm E_7$, first developed some 25 years ago by Alexei Stepanov, Eugene Plotkin and myself (a definitive exposition was given in my paper “A thirdlook at weight diagrams”), and an $\mathrm A_2$-proof for $\mathrm E_6$ and $\mathrm E_7$ developed by Mikhail Gavrilovich and myself in early 2000. The first new twist outlined in this paper is an observation that the $\mathrm A_2$-proof actually effectuates reduction to small parabolics, of corank 3 in $\mathrm E_6$ and of corank 5 in $\mathrm E_7$. This allows to revamp proofs and sharpen existing bounds in many applications. The second new variation is a $\mathrm D_5$-proof for $\mathrm E_6$, based on stabilisation of columns with one zero. [I devised also a similar $\mathrm D_6$-proof for $\mathrm E_7$, based on stabilisation of columns with two adjacent zeroes, but it is too abstruse to be included in a casual exposition.] Also, I list several further variations. Actual detailed calculations will appear in my paper "A closer look at weight diagrams of types $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$".
@article{ZNSL_2014_430_a3,
     author = {N. A. Vavilov},
     title = {Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25~years after},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--52},
     year = {2014},
     volume = {430},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a3/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 32
EP  - 52
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a3/
LA  - en
ID  - ZNSL_2014_430_a3
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 32-52
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a3/
%G en
%F ZNSL_2014_430_a3
N. A. Vavilov. Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 32-52. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a3/

[1] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[2] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutators width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[3] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179:1 (2003), 99–116 | DOI | MR | Zbl

[4] R. Hazrat, N. Vavilov, “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[5] V. I. Kopeiko, “Stabilization of symplectic groups over a ring of polynomials”, Math. USSR Sb., 34:5 (1978), 655–669 | DOI | MR | Zbl

[6] A. Yu. Luzgarev, A. K. Stavrova, “The elementary subgroup of an isotropic reductive group is perfect”, St. Petersburg Math. J., 23:5 (2012), 881–890 | DOI | MR | Zbl

[7] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[8] V. A. Petrov, A. K. Stavrova, “Elementary subgroups in isotropic reductive groups”, St. Petersburg Math. J., 20:4 (2009), 625–644 | DOI | MR | Zbl

[9] V. Petrov, A. Stavrova, “The Tits indices over semilocal rings”, Transform. Groups, 16:1 (2011), 193–217 | DOI | MR | Zbl

[10] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[11] A. Sivatsky, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $K$-theory, 17 (1999), 295–302 | DOI | MR

[12] M. R. Stein, “Stability theorems for $K_1$, $K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[13] A. Stepanov, Stability conditions in the theory of linear groups over rings, Ph. D. Thesis, Leningrad State Univ., 1987, 112 pp. (in Russian)

[14] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. K-Theory (to appear) , 18 pp.

[15] A. Stepanov, “Non-abelian $K$-theory of Chevalley groups over rings”, J. Math. Sci. (N. Y.) (to appear)

[16] A. V. Stepanov, Structure theory and subgroups of Chevalley groups over rings, Habilitationsschrift, Saint Petersburg State Univ., 2014, 136 pp. (in Russian)

[17] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[18] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 185:1 (2011), 253–276 | DOI | MR | Zbl

[19] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[20] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and the orthogonal group over polynomial rings”, J. Soviet Math., 20:6 (1982), 2665–2691 | DOI | MR | Zbl

[21] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55 (1986), 693–710 | DOI | MR | Zbl

[22] N. A. Vavilov, Subgroups of split classical groups, Habilitationsschrift, Leningrad State Univ., 1987, 334 pp. (in Russian)

[23] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[24] N. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[25] N. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[26] N. A. Vavilov, “Can one see the signs of structure constants?”, St. Petersburg Math. J., 19:4 (2008), 519–543 | DOI | MR | Zbl

[27] N. A. Vavilov, “Numerology of quadratic equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR | Zbl

[28] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. Fundamental lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942 | DOI | MR | Zbl

[29] N. Vavilov, A closer look at weight diagrams of types $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$, 48 pp., to appear

[30] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, St. Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl

[31] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci., 140:5 (2007), 626–645 | DOI | MR | Zbl

[32] N. A. Vavilov, V. G. Kazakevich, “Yet another variation on the theme of decomposition of transvections”, Vestnik St. Petersburg Univ. Math., 41:4 (2008), 345–347 | DOI | MR | Zbl

[33] N. A. Vavilov, V. G. Kazakevich, “More variations on the decomposition of transvections”, J. Math. Sci., 171:3 (2010), 322–330 | DOI | MR | Zbl

[34] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm E_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR | Zbl

[35] N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the $56$-dimensional representation”, J. Math. Sci., 180:3 (2012), 197–251 | DOI | MR | Zbl

[36] N. A. Vavilov, A. Yu. Luzgarev, “$\mathrm A_2$-proof of structure theorems for the Chevalley group of type $\mathrm E_8$”, St. Petersburg Math. J. (to appear)

[37] N. A. Vavilov, A. Yu. Luzgarev, “Calculations in exceptional groups, an update”, J. Math. Sci. (to appear) , 13 pp.

[38] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the $27$-dimensional representation”, J. Math. Sci., 145:1 (2007), 4697–4736 | DOI | MR | Zbl

[39] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, J. Math. Sci., 373 (2009), 48–72 | MR

[40] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-proof of structure theorems for the Chevalley group of type $\mathrm F_4$”, St. Petersburg Math. J., 20:4 (2009), 527–551 | DOI | MR | Zbl

[41] N. A. Vavilov, E. Ya. Perelman, “Polyvector representations of $\mathrm{GL}_n$”, J. Math. Sci., 145:1 (2007), 4737–4750 | DOI | MR | Zbl

[42] N. A. Vavilov, E. B. Plotkin, Stabilisation of columns, Unpublished manuscript, 1989, 12 pp.

[43] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[44] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Calculations in Chevalley groups over commutative rings”, Soviet Math. Dokl., 40:1 (1990), 145–147 | MR

[45] N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci., 192:2 (2013), 164–195 | DOI | MR | Zbl