, $\sum_{i=1}^{r-3}a_i\neq0$ for $2a_{r-1}+a_r=p-2$ or $p-1$ and $\sum_{i=1}^{r-3}a_i\neq0$ or $(r-3)(p-1)$ for $a_r=p-1$.
@article{ZNSL_2014_430_a2,
author = {T. S. Busel},
title = {On the {Jordan} block structure of a~product of long and short root elements in irreducible representations of algebraic groups of type~$B_r$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--31},
year = {2014},
volume = {430},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/}
}
TY - JOUR AU - T. S. Busel TI - On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 18 EP - 31 VL - 430 UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/ LA - ru ID - ZNSL_2014_430_a2 ER -
%0 Journal Article %A T. S. Busel %T On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$ %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 18-31 %V 430 %U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/ %G ru %F ZNSL_2014_430_a2
T. S. Busel. On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 18-31. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/
[1] N. Burbaki, Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972, 331 pp. | MR
[2] N. Burbaki, Gruppy i algebry Li, gl. VII–VIII, Mir, M., 1978, 342 pp. | MR
[3] M. V. Velichko, “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Trudy In-ta matematiki NAN Belarusi, 14:2 (2006), 28–34
[4] M. V. Velichko, Svoistva malykh unipotentnykh elementov v modulyarnykh predstavleniyakh klassicheskikh algebraicheskikh grupp, Avtoref. dis. na soiskanie uchenoi stepeni kand. fiz.-mat. nauk: 01.01.06, Institut matematiki NAN Belarusi, Minsk, 2007, 16 pp.
[5] M. V. Velichko, I. D. Suprunenko, “Malye kvadratichnye elementy v predstavleniyakh spetsialnoi lineinoi gruppy s bolshimi starshimi vesami”, Zap. nauchn. semin. POMI, 343, 2007, 84–120 | MR
[6] A. A. Osinovskaya, “Regulyarnye unipotentnye elementy iz estestvenno vlozhennykh podgrupp ranga 2 v modulyarnykh predstavleniyakh klassicheskikh grupp”, Zap. nauch. semin. POMI, 356, 2008, 159–178 | MR | Zbl
[7] A. A. Osinovskaya, “Regulyarnye unipotentnye elementy iz podsistemnykh podgrupp tipa $C_2$ v predstavleniyakh”, Trudy In-ta matematiki NAN Belarusi, 17:1 (2009), 119–126 | Zbl
[8] A. A. Osinovskaya, I. D. Suprunenko, “Blochnaya struktura unipotentnykh elementov iz estestvenno vlozhennykh podgrupp tipa $A_3$ v spetsialnykh modulyarnykh predstavleniyakh grupp tipa $A_n$”, Doklady NAN Belarusi, 51:6 (2007), 25–29 | MR
[9] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp. | MR | Zbl
[10] I. D. Suprunenko, “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Voprosy algebry i logiki, Trudy In-ta matematiki SO RAN, 30, Novosibirsk, 1996, 126–163 | Zbl
[11] I. D. Suprunenko, “O blochnoi strukture regulyarnykh unipotentnykh elementov iz podsistemnykh podgrupp tipa $A_1\times A_2$ v predstavleniyakh spetsialnoi lineinoi gruppy”, Zap. nauchn. semin. POMI, 388, 2011, 247–269 | MR
[12] U. Feit, Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990, 465 pp. | MR | Zbl
[13] R. Lawther, “Jordan block sizes of unipotent elements in exceptional algebraic groups”, Commun. in Algebra, 25 (1995), 4125–4156 | DOI | MR
[14] A. A. Osinovskaya, I. D. Suprunenko, “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273 (2004), 586–600 | DOI | MR | Zbl
[15] A. A. Osinovskaya, “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Commun. Algebra, 33 (2005), 213–220 | DOI | MR | Zbl
[16] S. Smith, “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl
[17] I. D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs Amer. Math. Soc., 200, no. 939, 2009 | DOI | MR
[18] P. H. Tiep, A. E. Zalesskii, “Mod $p$ reducibility of unramified representations of finite groups of Lie type”, Proc. London Math. Soc., 84 (2002), 439–472 | DOI | MR | Zbl
[19] M. V. Velichko, “On the behaviour of the root elements in irreducible representations of simple algebraic groups”, Trudy In-ta matematiki NAN Belarusi, 13:2 (2005), 116–121