On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The behaviour of a product of commuting long and short root elements of the group of type $B_r$ in $p$-restricted irreducible representations is investigated. For such representations with certain local properties of highest weights it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. For a $p$-restricted representation with highest weight $a_1\omega_1+\dots+a_r\omega_r$ this fact is proved when $a_j\neq p-1$ for some $j and one of the following holds: 1) $a_r\neq p-1$ and $\sum_{i=1}^{r-2}a_i\geq p-1$; 2) $2a_{r-1}+a_r, $\sum_{i=1}^{r-3}a_i\neq0$ for $2a_{r-1}+a_r=p-2$ or $p-1$ and $\sum_{i=1}^{r-3}a_i\neq0$ or $(r-3)(p-1)$ for $a_r=p-1$.
@article{ZNSL_2014_430_a2,
     author = {T. S. Busel},
     title = {On the {Jordan} block structure of a~product of long and short root elements in irreducible representations of algebraic groups of type~$B_r$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--31},
     year = {2014},
     volume = {430},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/}
}
TY  - JOUR
AU  - T. S. Busel
TI  - On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 18
EP  - 31
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/
LA  - ru
ID  - ZNSL_2014_430_a2
ER  - 
%0 Journal Article
%A T. S. Busel
%T On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 18-31
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/
%G ru
%F ZNSL_2014_430_a2
T. S. Busel. On the Jordan block structure of a product of long and short root elements in irreducible representations of algebraic groups of type $B_r$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 18-31. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a2/

[1] N. Burbaki, Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972, 331 pp. | MR

[2] N. Burbaki, Gruppy i algebry Li, gl. VII–VIII, Mir, M., 1978, 342 pp. | MR

[3] M. V. Velichko, “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Trudy In-ta matematiki NAN Belarusi, 14:2 (2006), 28–34

[4] M. V. Velichko, Svoistva malykh unipotentnykh elementov v modulyarnykh predstavleniyakh klassicheskikh algebraicheskikh grupp, Avtoref. dis. na soiskanie uchenoi stepeni kand. fiz.-mat. nauk: 01.01.06, Institut matematiki NAN Belarusi, Minsk, 2007, 16 pp.

[5] M. V. Velichko, I. D. Suprunenko, “Malye kvadratichnye elementy v predstavleniyakh spetsialnoi lineinoi gruppy s bolshimi starshimi vesami”, Zap. nauchn. semin. POMI, 343, 2007, 84–120 | MR

[6] A. A. Osinovskaya, “Regulyarnye unipotentnye elementy iz estestvenno vlozhennykh podgrupp ranga 2 v modulyarnykh predstavleniyakh klassicheskikh grupp”, Zap. nauch. semin. POMI, 356, 2008, 159–178 | MR | Zbl

[7] A. A. Osinovskaya, “Regulyarnye unipotentnye elementy iz podsistemnykh podgrupp tipa $C_2$ v predstavleniyakh”, Trudy In-ta matematiki NAN Belarusi, 17:1 (2009), 119–126 | Zbl

[8] A. A. Osinovskaya, I. D. Suprunenko, “Blochnaya struktura unipotentnykh elementov iz estestvenno vlozhennykh podgrupp tipa $A_3$ v spetsialnykh modulyarnykh predstavleniyakh grupp tipa $A_n$”, Doklady NAN Belarusi, 51:6 (2007), 25–29 | MR

[9] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp. | MR | Zbl

[10] I. D. Suprunenko, “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Voprosy algebry i logiki, Trudy In-ta matematiki SO RAN, 30, Novosibirsk, 1996, 126–163 | Zbl

[11] I. D. Suprunenko, “O blochnoi strukture regulyarnykh unipotentnykh elementov iz podsistemnykh podgrupp tipa $A_1\times A_2$ v predstavleniyakh spetsialnoi lineinoi gruppy”, Zap. nauchn. semin. POMI, 388, 2011, 247–269 | MR

[12] U. Feit, Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990, 465 pp. | MR | Zbl

[13] R. Lawther, “Jordan block sizes of unipotent elements in exceptional algebraic groups”, Commun. in Algebra, 25 (1995), 4125–4156 | DOI | MR

[14] A. A. Osinovskaya, I. D. Suprunenko, “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273 (2004), 586–600 | DOI | MR | Zbl

[15] A. A. Osinovskaya, “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Commun. Algebra, 33 (2005), 213–220 | DOI | MR | Zbl

[16] S. Smith, “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[17] I. D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs Amer. Math. Soc., 200, no. 939, 2009 | DOI | MR

[18] P. H. Tiep, A. E. Zalesskii, “Mod $p$ reducibility of unramified representations of finite groups of Lie type”, Proc. London Math. Soc., 84 (2002), 439–472 | DOI | MR | Zbl

[19] M. V. Velichko, “On the behaviour of the root elements in irreducible representations of simple algebraic groups”, Trudy In-ta matematiki NAN Belarusi, 13:2 (2005), 116–121