Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 202-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For $p>2$ odd, Jordan block sizes of the images of regular unipotent elements from subsystem subgroups of type $A_2$ in irreducible $p$-restricted representations for groups of type $A_r$ over the field of characteristic $p$, the weights of which are locally small with respect to $p$, are found. The weight is called locally small if the double sum of its two neighboring coefficients is less than $p$. This result is a part of a more common programme investigating the behavior of unipotent elements in representations of the classical algebraic groups. It can be used to solve recognition problems for representations or linear groups by the presence of certain elements.
@article{ZNSL_2014_430_a12,
     author = {A. A. Osinovskaya},
     title = {Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--218},
     year = {2014},
     volume = {430},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
TI  - Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 202
EP  - 218
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/
LA  - ru
ID  - ZNSL_2014_430_a12
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%T Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 202-218
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/
%G ru
%F ZNSL_2014_430_a12
A. A. Osinovskaya. Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 202-218. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/

[1] N. Burbaki, Gruppy i algebry Li, gl. VII–VIII, Mir, M., 1978 | MR

[2] M. V. Velichko, “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Trudy Instituta matematiki NAN Belarusi, 14:2 (2006), 28–34

[3] M. V. Velichko, Svoistva malykh unipotentnykh elementov v modulyarnykh predstavleniyakh klassicheskikh algebraicheskikh grupp, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, Institut matematiki NAN Belarusi, Minsk, 2007

[4] A. A. Osinovskaya, “Ogranicheniya neprivodimykh predstavlenii algebry Li $\mathfrak{sl}_3$ na podalgebry tipa $\mathfrak{sl}_2$ i struktura blokov Zhordana nilpotentnykh elementov”, Vestsi NAN Belarusi, Ser fiz.-mat. navuk, 2000, no. 2, 52–55 | MR

[5] A. A. Osinovskaya, I. D. Suprunenko, “Unipotentnye elementy iz podsistemnykh podgrupp tipa $A_3$ v predstavleniyakh spetsialnoi lineinoi gruppy”, Doklady NAN Belarusi, 56:4 (2012), 11–15

[6] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[7] I. D. Suprunenko, “Sokhranenie sistem vesov neprivodimykh predstavlenii algebraicheskoi gruppy i algebry Li tipa $A_l$ s ogranichennymi starshimi vesami pri reduktsii po modulyu $p$”, Vestsi AN BSSR, Ser. fiz.-mat. navuk, 1983, no. 2, 18–22 | MR | Zbl

[8] B. Braden, “Restricted representations of classical Lie algebras of type $A_2$ and $B_2$”, Bull. Amer. Math. Soc., 73 (1967), 482–486 | DOI | MR | Zbl

[9] J. Brundan, A. Kleshchev, I. Suprunenko, “Semisimple restrictions from $GL(n)$ to $GL(n-1)$”, J. reine angew. Math., 500 (1998), 83–112 | MR | Zbl

[10] J. C. Jantzen, Representations of algebraic groups, 2nd edition, Providence, 2003 | MR

[11] A. A. Osinovskaya, “On the restrictions of modular irreducible representations of algebraic groups of type $A_n$ to naturally embedded subgroups of type $A_2$”, J. Group Theory, 8 (2005), 43–92 | DOI | MR | Zbl

[12] A. A. Osinovskaya, I. D. Suprunenko, “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273:2 (2004), 586–600 | DOI | MR | Zbl

[13] G. M. Seitz, “Unipotent elements, tilting modules, and saturation”, Inv. Math., 141:3 (2000), 467–503 | DOI | MR

[14] S. Smith, “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[15] I. D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the AMS, 200, no. 939, 2009 | DOI | MR

[16] M. V. Velichko, “On the behaviour of root elements in irreducible representations of simple algebraic groups”, Trudy Instituta matematiki NAN Belarusi, 13:2 (2005), 116–121