Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 202-218
Voir la notice de l'article provenant de la source Math-Net.Ru
For $p>2$ odd, Jordan block sizes of the images of regular unipotent elements from subsystem subgroups of type $A_2$ in irreducible $p$-restricted representations for groups of type $A_r$ over the field of characteristic $p$, the weights of which are locally small with respect to $p$, are found. The weight is called locally small if the double sum of its two neighboring coefficients is less than $p$. This result is a part of a more common programme investigating the behavior of unipotent elements in representations of the classical algebraic groups. It can be used to solve recognition problems for representations or linear groups by the presence of certain elements.
@article{ZNSL_2014_430_a12,
author = {A. A. Osinovskaya},
title = {Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {202--218},
publisher = {mathdoc},
volume = {430},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/}
}
TY - JOUR AU - A. A. Osinovskaya TI - Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 202 EP - 218 VL - 430 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/ LA - ru ID - ZNSL_2014_430_a12 ER -
%0 Journal Article %A A. A. Osinovskaya %T Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 202-218 %V 430 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/ %G ru %F ZNSL_2014_430_a12
A. A. Osinovskaya. Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 202-218. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a12/