Hensel--Shafarevich canonical basis in Lubin--Tate formal modules
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 186-201

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a generalization of the Hensel–Shafarevich basis for Lubin–Tate formal modules over a local field. These formal modules are constructed on the maximal ideal of some extension of this field. We study both the case when the extension has perfect residue field and the case with an imperfect residue field.
@article{ZNSL_2014_430_a11,
     author = {E. V. Ikonnikova},
     title = {Hensel--Shafarevich canonical basis in {Lubin--Tate} formal modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--201},
     publisher = {mathdoc},
     volume = {430},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/}
}
TY  - JOUR
AU  - E. V. Ikonnikova
TI  - Hensel--Shafarevich canonical basis in Lubin--Tate formal modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 186
EP  - 201
VL  - 430
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/
LA  - ru
ID  - ZNSL_2014_430_a11
ER  - 
%0 Journal Article
%A E. V. Ikonnikova
%T Hensel--Shafarevich canonical basis in Lubin--Tate formal modules
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 186-201
%V 430
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/
%G ru
%F ZNSL_2014_430_a11
E. V. Ikonnikova. Hensel--Shafarevich canonical basis in Lubin--Tate formal modules. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 186-201. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/