Hensel–Shafarevich canonical basis in Lubin–Tate formal modules
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 186-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we present a generalization of the Hensel–Shafarevich basis for Lubin–Tate formal modules over a local field. These formal modules are constructed on the maximal ideal of some extension of this field. We study both the case when the extension has perfect residue field and the case with an imperfect residue field.
@article{ZNSL_2014_430_a11,
     author = {E. V. Ikonnikova},
     title = {Hensel{\textendash}Shafarevich canonical basis in {Lubin{\textendash}Tate} formal modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--201},
     year = {2014},
     volume = {430},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/}
}
TY  - JOUR
AU  - E. V. Ikonnikova
TI  - Hensel–Shafarevich canonical basis in Lubin–Tate formal modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 186
EP  - 201
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/
LA  - ru
ID  - ZNSL_2014_430_a11
ER  - 
%0 Journal Article
%A E. V. Ikonnikova
%T Hensel–Shafarevich canonical basis in Lubin–Tate formal modules
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 186-201
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/
%G ru
%F ZNSL_2014_430_a11
E. V. Ikonnikova. Hensel–Shafarevich canonical basis in Lubin–Tate formal modules. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 186-201. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a11/

[1] S. V. Vostokov, “Kanonicheskii bazis Genzelya–Shafarevicha v polnykh diskretno-normirovannykh polyakh”, Zap. nauchn. semin. POMI, 394, 2011, 174–193 | MR

[2] S. V. Vostokov, “Normennoe sparivanie v formalnykh modulyakh”, Izvestiya AN SSSR. Ser. matem., 43:4 (1979), 765–794 | MR | Zbl

[3] S. V. Vostokov, I. L. Klimovitskii, “Primarnye elementy v formalnykh modulyakh”, Sovr. probl. matem., 17 (2013), 153–163 | DOI | Zbl

[4] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, AMS Bookstore, 2002 | MR | Zbl

[5] M. Hazewinkel, Formal Groups and Applications, Pure Appl. Math., 78, 1978 | MR | Zbl

[6] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. Math. Second Series, 81 (1965), 380–387 | DOI | MR | Zbl

[7] D. G. Benua, S. V. Vostokov, “Normennoe sparivanie v formalnykh gruppakh i predstavleniya Galua”, Algebra i Analiz, 2:6 (1990), 69–97 | MR | Zbl

[8] O. V. Demchenko, “Formalnye gruppy Khondy: arifmetika gruppy tochek”, Algebra i Analiz, 12:1 (2000), 132–149 | MR | Zbl

[9] H. Hasse, “Die Gruppe der $\frak p^n$-primären Zahlen für einem Primteiler $\frak p^n$ von $p$”, J. Reine Angew. Math., 176 (1936), 174–183 | Zbl

[10] E. V. Ikonnikova, E. V. Shaverdova, “Bazis Shafarevicha v mnogomernom lokalnom pole”, Zap. nauchn. semin. POMI, 413, 2013, 115–133 | MR