$BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic~2
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 136-185
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a sequel of joint paper by the author with S. O. Ivanov, Yu. Volkov, and G. Zhou. In the present paper $BV$-structure, and therefore, Gerstenhaber algebra structure on Hochschild cohomology of local algebras of generalized quaternion type is completely described over a field of characteristic 2. The family of algebras under investigation contains group algebras of generalized quaternion groups for which the case of characteristic 2 is the only case when calculation of Hochschild cohomology and structures on it is a highly non-trivial problem. Also the group algebras of generalized quaternion groups represent classes of Morita-equivalence of tame group blocks from K. Erdmann's classification. So in particular $BV$-structure on Hochschild cohomology of group algebras of some non-commutative groups is described.
@article{ZNSL_2014_430_a10,
author = {A. A. Ivanov},
title = {$BV$-algebra structure on {Hochschild} cohomology of local algebras of quaternion type in characteristic~2},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--185},
publisher = {mathdoc},
volume = {430},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/}
}
TY - JOUR AU - A. A. Ivanov TI - $BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic~2 JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 136 EP - 185 VL - 430 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/ LA - ru ID - ZNSL_2014_430_a10 ER -
A. A. Ivanov. $BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic~2. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 136-185. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/