$BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic 2
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 136-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is a sequel of joint paper by the author with S. O. Ivanov, Yu. Volkov, and G. Zhou. In the present paper $BV$-structure, and therefore, Gerstenhaber algebra structure on Hochschild cohomology of local algebras of generalized quaternion type is completely described over a field of characteristic 2. The family of algebras under investigation contains group algebras of generalized quaternion groups for which the case of characteristic 2 is the only case when calculation of Hochschild cohomology and structures on it is a highly non-trivial problem. Also the group algebras of generalized quaternion groups represent classes of Morita-equivalence of tame group blocks from K. Erdmann's classification. So in particular $BV$-structure on Hochschild cohomology of group algebras of some non-commutative groups is described.
@article{ZNSL_2014_430_a10,
     author = {A. A. Ivanov},
     title = {$BV$-algebra structure on {Hochschild} cohomology of local algebras of quaternion type in characteristic~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--185},
     year = {2014},
     volume = {430},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/}
}
TY  - JOUR
AU  - A. A. Ivanov
TI  - $BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic 2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 136
EP  - 185
VL  - 430
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/
LA  - ru
ID  - ZNSL_2014_430_a10
ER  - 
%0 Journal Article
%A A. A. Ivanov
%T $BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic 2
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 136-185
%V 430
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/
%G ru
%F ZNSL_2014_430_a10
A. A. Ivanov. $BV$-algebra structure on Hochschild cohomology of local algebras of quaternion type in characteristic 2. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 27, Tome 430 (2014), pp. 136-185. http://geodesic.mathdoc.fr/item/ZNSL_2014_430_a10/

[1] N. Bian, G. Zhang, P. Zhang, “Setwise homotopy category”, Appl. Categ. Structures, 17:6 (2009), 561–565 | DOI | MR | Zbl

[2] C. Cibils, A. Solotar, “Hochschild cohomology algebra of abelian groups”, Arch. Math., 68 (1997), 17–21 | DOI | MR | Zbl

[3] K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes Math., 1428, Berlin–Heidelberg, 1990 | MR | Zbl

[4] C.-H. Eu, T. Schedler, “Calabi-Yau Frobenius algebras”, J. Algebra, 321:3 (2009), 774–815 | DOI | MR | Zbl

[5] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa, I: obobschennye gruppy kvaternionov”, Algebra i analiz, 18:1 (2006), 55–107 | MR | Zbl

[6] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. Math. (2), 78 (1963), 267–288 | DOI | MR | Zbl

[7] E. Getzler, “Batalin–Vilkovsky algebras and two-dimensional topological field theories”, Comm. Math. Phys., 159:2 (1994), 265–285 | DOI | MR | Zbl

[8] T. Holm, “The Hochschild cohomology ring of a modular group algebra: the commutative case”, Comm. Algebra, 24:6 (1996), 1957–1969 | DOI | MR | Zbl

[9] G. Hochschild, “On the cohomology groups of an associative algebra”, Ann. Math. (2), 46 (1945), 58–67 | DOI | MR | Zbl

[10] A. A. Ivanov, S. O. Ivanov, Yu. Volkov, G. Zhou, On the Hochschild cohomology ring of the quaternion group of order eight in characteristic two, (to appear), arXiv: 1407.4341

[11] S. O. Ivanov, “Samoin'ektivnye algebry stabilnoi Kalabi–Yau razmernosti”, Zap. nauchn. semin. POMI, 394, 2011, 226–261

[12] J. Le, G. Zhou, “On the Hochschild cohomology ring of tensor products of algebras”, J. Pure Appl. Algebra, 218:8 (2014), 1463–1477 | DOI | MR | Zbl

[13] J. Le, G. Zhou, Comparison morphisms and Hochschild cohomology, in preparation

[14] Y.-M. Liu, G. Zhou, The Batalin–Vilkovisky structure over the Hochschild cohomology ring of a group algebra, preprint, 2014

[15] J.-L. Loday, Cyclic homology, Appendix E by M. O. Ronco, Grund. Math. Wiss., 301, Springer-Verlag, Berlin, 1992 | MR | Zbl

[16] S. Maklein, Gomologiya, Mir, M., 1966

[17] Yu. I. Manin, “Three constructions of Frobenius manifolds: a comparative study”, Asian J. Math., 3:1 (1999), 179–220 | MR | Zbl

[18] J. P. May, “The cohomology of restricted Lie algebras and of Hopf algebras”, J. Algebra, 3 (1966), 123–146 | DOI | MR | Zbl

[19] L. Menichi, “Batalin–Vilkovisky algebras and cyclic cohomology of Hopf algebras”, K-Theory, 32:3 (2004), 231–251 | DOI | MR | Zbl

[20] S. Sanchez-Flores, “The Lie structure on the Hochschild cohomology of a modular group algebra”, J. Pure Appl. Algebra, 216:3 (2012), 718–733 | DOI | MR | Zbl

[21] T. Tradler, “The Batalin–Vilkovisky algebra on Hochschild cohomology induced by infinity inner products”, Ann. Inst. Fourier, 58:7 (2008), 2351–2379 | DOI | MR | Zbl

[22] T. Yang, A Batalin–Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials, 2007, arXiv: 0707.4213 | MR