@article{ZNSL_2014_429_a9,
author = {D. B. Karp},
title = {Representations and inequalities for generalized hypergeometric functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--139},
year = {2014},
volume = {429},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a9/}
}
D. B. Karp. Representations and inequalities for generalized hypergeometric functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 121-139. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a9/
[1] H. Alzer, “On some inequalities for the gamma and psi functions”, Math. Comp., 66:217 (1997), 373–389 | DOI | MR | Zbl
[2] D. E. Amos, “Computation of modified Bessel functions and their ratios”, Math. Comp., 28:25 (1974), 239–251 | DOI | MR | Zbl
[3] R. A. Askey, A. B. Olde Daalhuis, “Generalized Hypergeometric Functions and Meijer $G$-Function”, NIST handbook of mathematical functions, US Dept. Commerce, Washington, DC, 2010, 403–418 | MR
[4] B. L. J. Braaskma, “Asymptotic expansions and analytic continuation for a class of Barnes-integrals”, Composito Math., 15:3 (1964), 239–341 | MR
[5] A. Z. Grinshpan, M. E. H. Ismail, “Completely monotonic functions involving the Gamma and $q$-Gamma Functions”, Proc. Amer. Math. Soc., 134:4 (2006), 1153–1160 | DOI | MR | Zbl
[6] S. I. Kalmykov, D. B. Karp, “Log-concavity for series in reciprocal gamma functions and applications”, Integral Transforms Spec. Funct., 24:11 (2013), 859–872 | DOI | MR | Zbl
[7] S. I. Kalmykov, D. B. Karp, “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406 (2013), 400–418 | DOI | MR
[8] D. B. Karp, J. L. López, Distributional $G$-function of Meijer and representations of generalized hypergeometric functions, In preparation
[9] D. Karp, E. Prilepkina, “Hypergeometric functions as generalized Stieltjes transforms”, J. Math. Anal. Appl., 393:2 (2012), 348–359 | DOI | MR | Zbl
[10] D. Karp, E. Prilepkina, “Generalized Stieltjes functions and their exact order”, Journal of Classical Analysis, 1:1 (2012), 53–74
[11] D. Karp, S. M. Sitnik, “Inequalities and monotonicity of ratios for generalized hypergeometric function”, J. Approx. Theory, 161 (2009), 337–352 | DOI | MR | Zbl
[12] D. Karp, S. M. Sitnik, “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364 (2010), 384–394 | DOI | MR | Zbl
[13] D. Karp, “Hypergeometric reproducing kernels and analytic continuation from a half-line”, Integral Transforms Spec. Funct., 14:6 (2003), 485–498 | DOI | MR | Zbl
[14] A. A. Kilbas, M. Saigo, $H$-transforms. Theory and applications, Analytical Methods and Special Functions, 9, Chapman Hall/CRC, 2004 | DOI | MR | Zbl
[15] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes Math. Series, 301, Longman Scirntific Technical, Harlow; John Wiley Sons, Inc., New York, 1994 | MR | Zbl
[16] Y. L. Luke, “Inequalities for generalized hypergeometric functions”, Journal of Approximation Theory, 5 (1972), 41–65 | DOI | MR | Zbl
[17] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and its applications, Second edition, Springer, 2011 | MR
[18] D. S. Mitrinović, J. E. Pecarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, 1993 | MR | Zbl
[19] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187, Academic Press Inc., 1992 | MR
[20] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More Special Functions, Gordon and Breach Science Publishers, 1990 | MR | Zbl
[21] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, 1999 | MR | Zbl
[22] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, Studies in Math., 37, Walter de Gruyter, 2010 | MR | Zbl