Representations and inequalities for generalized hypergeometric functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 121-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An integral representation for the generalized hypergeometric function unifying known representations via generalized Stieltjes, Laplace, and cosine Fourier transforms is found. Using positivity conditions for the weight in this representation, various new facts regarding generalized hypergeometric functions, including complete monotonicity, log-convexity in upper parameters, monotonicity of ratios and new proofs of Luke's bounds are established. In addition, two-sided inequalities for the Bessel type hypergeometric functions are derived with use of their series representations.
@article{ZNSL_2014_429_a9,
     author = {D. B. Karp},
     title = {Representations and inequalities for generalized hypergeometric functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--139},
     year = {2014},
     volume = {429},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a9/}
}
TY  - JOUR
AU  - D. B. Karp
TI  - Representations and inequalities for generalized hypergeometric functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 121
EP  - 139
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a9/
LA  - en
ID  - ZNSL_2014_429_a9
ER  - 
%0 Journal Article
%A D. B. Karp
%T Representations and inequalities for generalized hypergeometric functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 121-139
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a9/
%G en
%F ZNSL_2014_429_a9
D. B. Karp. Representations and inequalities for generalized hypergeometric functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 121-139. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a9/

[1] H. Alzer, “On some inequalities for the gamma and psi functions”, Math. Comp., 66:217 (1997), 373–389 | DOI | MR | Zbl

[2] D. E. Amos, “Computation of modified Bessel functions and their ratios”, Math. Comp., 28:25 (1974), 239–251 | DOI | MR | Zbl

[3] R. A. Askey, A. B. Olde Daalhuis, “Generalized Hypergeometric Functions and Meijer $G$-Function”, NIST handbook of mathematical functions, US Dept. Commerce, Washington, DC, 2010, 403–418 | MR

[4] B. L. J. Braaskma, “Asymptotic expansions and analytic continuation for a class of Barnes-integrals”, Composito Math., 15:3 (1964), 239–341 | MR

[5] A. Z. Grinshpan, M. E. H. Ismail, “Completely monotonic functions involving the Gamma and $q$-Gamma Functions”, Proc. Amer. Math. Soc., 134:4 (2006), 1153–1160 | DOI | MR | Zbl

[6] S. I. Kalmykov, D. B. Karp, “Log-concavity for series in reciprocal gamma functions and applications”, Integral Transforms Spec. Funct., 24:11 (2013), 859–872 | DOI | MR | Zbl

[7] S. I. Kalmykov, D. B. Karp, “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406 (2013), 400–418 | DOI | MR

[8] D. B. Karp, J. L. López, Distributional $G$-function of Meijer and representations of generalized hypergeometric functions, In preparation

[9] D. Karp, E. Prilepkina, “Hypergeometric functions as generalized Stieltjes transforms”, J. Math. Anal. Appl., 393:2 (2012), 348–359 | DOI | MR | Zbl

[10] D. Karp, E. Prilepkina, “Generalized Stieltjes functions and their exact order”, Journal of Classical Analysis, 1:1 (2012), 53–74

[11] D. Karp, S. M. Sitnik, “Inequalities and monotonicity of ratios for generalized hypergeometric function”, J. Approx. Theory, 161 (2009), 337–352 | DOI | MR | Zbl

[12] D. Karp, S. M. Sitnik, “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364 (2010), 384–394 | DOI | MR | Zbl

[13] D. Karp, “Hypergeometric reproducing kernels and analytic continuation from a half-line”, Integral Transforms Spec. Funct., 14:6 (2003), 485–498 | DOI | MR | Zbl

[14] A. A. Kilbas, M. Saigo, $H$-transforms. Theory and applications, Analytical Methods and Special Functions, 9, Chapman Hall/CRC, 2004 | DOI | MR | Zbl

[15] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes Math. Series, 301, Longman Scirntific Technical, Harlow; John Wiley Sons, Inc., New York, 1994 | MR | Zbl

[16] Y. L. Luke, “Inequalities for generalized hypergeometric functions”, Journal of Approximation Theory, 5 (1972), 41–65 | DOI | MR | Zbl

[17] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and its applications, Second edition, Springer, 2011 | MR

[18] D. S. Mitrinović, J. E. Pecarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, 1993 | MR | Zbl

[19] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187, Academic Press Inc., 1992 | MR

[20] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More Special Functions, Gordon and Breach Science Publishers, 1990 | MR | Zbl

[21] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, 1999 | MR | Zbl

[22] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, Studies in Math., 37, Walter de Gruyter, 2010 | MR | Zbl