On some rational functions which are analogues of Chebyshev polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 106-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, rational functions, which are analogues of Chebyshev polynomials of the second, third and fourth kind, are considered. These rational functions are extremal in Bernstein type inequalities with corresponding weights. Orthogonalization of mentioned functions also is presented.
@article{ZNSL_2014_429_a8,
     author = {S. I. Kalmykov},
     title = {On some rational functions which are analogues of {Chebyshev} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--120},
     year = {2014},
     volume = {429},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a8/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - On some rational functions which are analogues of Chebyshev polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 106
EP  - 120
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a8/
LA  - ru
ID  - ZNSL_2014_429_a8
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T On some rational functions which are analogues of Chebyshev polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 106-120
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a8/
%G ru
%F ZNSL_2014_429_a8
S. I. Kalmykov. On some rational functions which are analogues of Chebyshev polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 106-120. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a8/

[1] Ya. L. Geronimus, Teoriya ortogonalnykh mnogochlenov, GITTL, M., 1950

[2] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[3] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Mat. sb., 198:12 (2007), 37–46 | DOI | MR | Zbl

[4] S. I. Kalmykov, “Printsipy mazhoratsii i nekotorye neravenstva dlya polinomov i ratsionalnykh funktsii s predpisannymi polyusami”, Zap. nauchn. semin. POMI, 357, 2008, 143–157 | MR | Zbl

[5] V. N. Dubinin, A. V. Olesov, “O primenenii konformnykh otobrazhenii k neravenstam dlya polinomov”, Zap. nauchn. semin. POMI, 286, 2002, 85–102 | MR | Zbl

[6] V. N. Dubinin, S. I. Kalmykov, “Ekstremalnye svoistva polinomov Chebyshëva”, Dalnevost. mat. zh., 5:2 (2004), 169–177

[7] P. Borwein, T. Erdelyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc., 50:3 (1994), 501–519 | DOI | MR | Zbl

[8] P. Borwein, T. Erdelyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995 | MR | Zbl

[9] K. Deckers, J. Van Deun, A. Bultheel, “An extended relation between orthogonal rational functions on the unit circle and the interval $[-1,1]$”, J. Math. Anal. Appl., 334:2 (2007), 1260–1275 | DOI | MR | Zbl

[10] V. N. Dubinin, “O primenenii konformnykh otobrazhenii v neravenstvakh dlya ratsionalnykh funktsii”, Izv. RAN. Ser. mat., 66:2 (2002), 67–80 | DOI | MR | Zbl

[11] A. L. Lukashov, “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. mat., 68:3 (2004), 115–138 | DOI | MR | Zbl

[12] G. Min, “Inequalities for rational functions with prescribed poles”, Can. J. Math., 50:1 (1998), 152–166 | DOI | MR | Zbl

[13] A. V. Olesov, Neravenstva dlya polinomov i ratsionalnykh funktsii, Preprint No 18, DVO RAN, Dal-nauka DVO RAN, Vladivostok, 2004