Bounded remainder sets on the double covering of the Klein bottle
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 82-105

Voir la notice de l'article provenant de la source Math-Net.Ru

The shift $\widetilde{\mathbb S}\colon\widetilde{\mathbb K}^2\to\widetilde{\mathbb K}^2$ on the double covering of the Klein bottle $\widetilde{\mathbb K}^2=\mathbb K^2\times\{\pm1\}$ is considered. This shift $\widetilde{\mathbb S}$ generates some tiling $\widetilde{\mathbb K}^2=\widetilde{\mathbb K}^2_0\sqcup\widetilde{\mathbb K}^2_1$ into two bounded remainder sets $\widetilde{\mathbb K}^2_0$ and $\widetilde{\mathbb K}^2_1$ with respect to the shift $\widetilde{\mathbb S}$. Two-sided estimates are proved for the deviation functions of these sets.
@article{ZNSL_2014_429_a7,
     author = {V. G. Zhuravlev},
     title = {Bounded remainder sets on the double covering of the {Klein} bottle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--105},
     publisher = {mathdoc},
     volume = {429},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a7/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Bounded remainder sets on the double covering of the Klein bottle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 82
EP  - 105
VL  - 429
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a7/
LA  - ru
ID  - ZNSL_2014_429_a7
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Bounded remainder sets on the double covering of the Klein bottle
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 82-105
%V 429
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a7/
%G ru
%F ZNSL_2014_429_a7
V. G. Zhuravlev. Bounded remainder sets on the double covering of the Klein bottle. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a7/