Bounded remainder sets on the double covering of the Klein bottle
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 82-105
Voir la notice de l'article provenant de la source Math-Net.Ru
The shift $\widetilde{\mathbb S}\colon\widetilde{\mathbb K}^2\to\widetilde{\mathbb K}^2$ on the double covering of the Klein bottle $\widetilde{\mathbb K}^2=\mathbb K^2\times\{\pm1\}$ is considered. This shift $\widetilde{\mathbb S}$ generates some tiling $\widetilde{\mathbb K}^2=\widetilde{\mathbb K}^2_0\sqcup\widetilde{\mathbb K}^2_1$ into two bounded remainder sets $\widetilde{\mathbb K}^2_0$ and $\widetilde{\mathbb K}^2_1$ with respect to the shift $\widetilde{\mathbb S}$. Two-sided estimates are proved for the deviation functions of these sets.
@article{ZNSL_2014_429_a7,
author = {V. G. Zhuravlev},
title = {Bounded remainder sets on the double covering of the {Klein} bottle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--105},
publisher = {mathdoc},
volume = {429},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a7/}
}
V. G. Zhuravlev. Bounded remainder sets on the double covering of the Klein bottle. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a7/