@article{ZNSL_2014_429_a5,
author = {Yu. V. Dymchenko},
title = {A condition of smallness of girth on {Finsler's} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--63},
year = {2014},
volume = {429},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a5/}
}
Yu. V. Dymchenko. A condition of smallness of girth on Finsler's space. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 55-63. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a5/
[1] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, M., 1983 | MR
[2] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauchn. semin. POMI, 276, 2001, 52–82 | MR | Zbl
[3] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Lan, SPb., 1999
[4] Kh. Rund, Differentsialnaya geometriya finslerovykh prostranstv, M., 1981
[5] V. A. Shlyk, “Uslovie $\varepsilon$-obkhvata dlya $N$-kompaktov”, Zap. nauchn. semin. POMI, 196, 1991, 154–161 | MR | Zbl
[6] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[7] D. Cibotaru, J. de Lira, A note on the area and coarea formulas for general volume densities and some applications, arXiv: 1305.2968
[8] Z. Shen, Lectures on Finsler geometry, Series on Multivariate Analysis Series, World Scientific Publishing Company, Inc., 2001 | MR