Inequalities for moduli of the circumferentially mean $p$-valent functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 44-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a circumferentially mean $p$-valent function in the disk $|z|1$ with Montel's normalization: $f(0)=0$, $f(\omega)=\omega$ $(0\omega1)$. Under an additional constraint on the covering of the concentric circles by $f$, precise lower and upper bounds of modulus $|f(z)|$ for some $z\in(-1,0)$ are established. The necessity of such constraint for the non-trivial estimates to be true is shown.
@article{ZNSL_2014_429_a4,
     author = {V. N. Dubinin},
     title = {Inequalities for moduli of the circumferentially mean $p$-valent functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--54},
     publisher = {mathdoc},
     volume = {429},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Inequalities for moduli of the circumferentially mean $p$-valent functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 44
EP  - 54
VL  - 429
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a4/
LA  - ru
ID  - ZNSL_2014_429_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Inequalities for moduli of the circumferentially mean $p$-valent functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 44-54
%V 429
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a4/
%G ru
%F ZNSL_2014_429_a4
V. N. Dubinin. Inequalities for moduli of the circumferentially mean $p$-valent functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 44-54. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a4/