Bounded holomorphic functions covering no concentric circles
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 34-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

By the symmetrization method, the growth and distortion theorems for the functions mentioned in the title of the paper are proved. Precise estimates for the moduli of such functions and of their derivatives at inner and boundary points and an estimate for the Schwarzian derivative are given.
@article{ZNSL_2014_429_a3,
     author = {V. N. Dubinin},
     title = {Bounded holomorphic functions covering no concentric circles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--43},
     year = {2014},
     volume = {429},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Bounded holomorphic functions covering no concentric circles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 34
EP  - 43
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a3/
LA  - ru
ID  - ZNSL_2014_429_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Bounded holomorphic functions covering no concentric circles
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 34-43
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a3/
%G ru
%F ZNSL_2014_429_a3
V. N. Dubinin. Bounded holomorphic functions covering no concentric circles. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 34-43. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a3/

[1] W. K. Hayman, Multivalent functions, Second ed., Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[2] A. Frolova, M. Levenshtein, D. Shoikhet, A. Vasil'ev, “Boundary distortion estimates for holomorphic maps”, Complex Anal. Oper. Theory, 8 (2014), 1129–1149 | DOI | MR | Zbl

[3] V. Bolotnikov, M. Elin, D. Shoikhet, “Inequalities for angular derivatives and boundary interpolation”, Anal. Math. Phys., 3 (2013), 63–96 | DOI | MR | Zbl

[4] T. Aliyev Azeroğlu, B. N. Örnek, “A refined Schwarz inequality on the boundary”, Complex Var. Elliptic Equ., 58 (2013), 571–577 | DOI | MR | Zbl

[5] A. Lecko, B. Uzar, “A note on Julia-Caratheodory Theorem for functions with fixed initial coefficients”, Proc. Japan Acad. Ser. A, 89 (2013), 133–137 | DOI | MR | Zbl

[6] B. N. Örnek, “Sharpened forms of the Schwarz lemma on the boudary”, Bull. Korean Math. Soc., 50 (2013), 2053-2059 | DOI | MR | Zbl

[7] G. Cleanthous, “Growth theorems for holomorphic functions under geometric conditions for the image”, Comput. Methods Funct. Theory, 13 (2013), 277–294 | DOI | MR | Zbl

[8] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[9] S. Pouliasis, “Condenser capacity and meromorphic functions”, Comput. Methods Funct. Theory, 11 (2011), 237–245 | DOI | MR | Zbl

[10] V. N. Dubinin, “O sokhranenii konformnoi emkosti pri otobrazhenii meromorfnymi funktsiyami”, Zap. nauchn. semin. POMI, 392, 2011, 67–73 | MR

[11] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, 1992 | MR | Zbl

[12] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Kub. GU, Krasnodar, 1985

[13] V. N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Mat. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl

[14] V. N. Dubinin, “O granichnykh znacheniyakh proizvodnoi Shvartsa regulyarnoi funktsii”, Mat. sb., 202:5 (2011), 29–44 | DOI | MR | Zbl