@article{ZNSL_2014_429_a3,
author = {V. N. Dubinin},
title = {Bounded holomorphic functions covering no concentric circles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--43},
year = {2014},
volume = {429},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a3/}
}
V. N. Dubinin. Bounded holomorphic functions covering no concentric circles. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 34-43. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a3/
[1] W. K. Hayman, Multivalent functions, Second ed., Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[2] A. Frolova, M. Levenshtein, D. Shoikhet, A. Vasil'ev, “Boundary distortion estimates for holomorphic maps”, Complex Anal. Oper. Theory, 8 (2014), 1129–1149 | DOI | MR | Zbl
[3] V. Bolotnikov, M. Elin, D. Shoikhet, “Inequalities for angular derivatives and boundary interpolation”, Anal. Math. Phys., 3 (2013), 63–96 | DOI | MR | Zbl
[4] T. Aliyev Azeroğlu, B. N. Örnek, “A refined Schwarz inequality on the boundary”, Complex Var. Elliptic Equ., 58 (2013), 571–577 | DOI | MR | Zbl
[5] A. Lecko, B. Uzar, “A note on Julia-Caratheodory Theorem for functions with fixed initial coefficients”, Proc. Japan Acad. Ser. A, 89 (2013), 133–137 | DOI | MR | Zbl
[6] B. N. Örnek, “Sharpened forms of the Schwarz lemma on the boudary”, Bull. Korean Math. Soc., 50 (2013), 2053-2059 | DOI | MR | Zbl
[7] G. Cleanthous, “Growth theorems for holomorphic functions under geometric conditions for the image”, Comput. Methods Funct. Theory, 13 (2013), 277–294 | DOI | MR | Zbl
[8] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[9] S. Pouliasis, “Condenser capacity and meromorphic functions”, Comput. Methods Funct. Theory, 11 (2011), 237–245 | DOI | MR | Zbl
[10] V. N. Dubinin, “O sokhranenii konformnoi emkosti pri otobrazhenii meromorfnymi funktsiyami”, Zap. nauchn. semin. POMI, 392, 2011, 67–73 | MR
[11] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, 1992 | MR | Zbl
[12] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Kub. GU, Krasnodar, 1985
[13] V. N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Mat. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl
[14] V. N. Dubinin, “O granichnykh znacheniyakh proizvodnoi Shvartsa regulyarnoi funktsii”, Mat. sb., 202:5 (2011), 29–44 | DOI | MR | Zbl