On the class numbers of algebraic number fields
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 193-201

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a number field of degree $n$ over $\mathbb Q$ and $d,h$, and $R$ be the absolute value of the discriminant, the class number, and the regulator, respectively, of $K$. It is known that if $K$ contains no quadratic subfield, then $$ hR\gg\frac{d^{1/2}}{\log d}, $$ where the implied constant depends only on $n$. In Theorem 1 this lower estimate is improved for pure cubic fields. Consider the family $\mathcal K_n$ where $K\in\mathcal K_n$ if $K$ is a totally real number field of degree $n$ whose normal closure has the symmetric group $S_n$ as its Galois group. Theorem 2: Fix $n\ge2$. There are infinitely many $K\in\mathcal K_n$ with $$ h\gg d^{1/2}(\log\log d)^{n-1}/(\log d)^n, $$ where the implied constant depends only on $n$. This is a somewhat greater improvement over W. Duke's analogous result with $h\gg d^{1/2}/(\log d)^n$ [MR 1966783 (2004g:11103)].
@article{ZNSL_2014_429_a13,
     author = {O. M. Fomenko},
     title = {On the class numbers of algebraic number fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {429},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the class numbers of algebraic number fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 193
EP  - 201
VL  - 429
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/
LA  - ru
ID  - ZNSL_2014_429_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the class numbers of algebraic number fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 193-201
%V 429
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/
%G ru
%F ZNSL_2014_429_a13
O. M. Fomenko. On the class numbers of algebraic number fields. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 193-201. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/