@article{ZNSL_2014_429_a13,
author = {O. M. Fomenko},
title = {On the class numbers of algebraic number fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--201},
year = {2014},
volume = {429},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/}
}
O. M. Fomenko. On the class numbers of algebraic number fields. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 193-201. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/
[1] E. Landau, “Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1918 (1918), 79–97 | Zbl
[2] C. L. Siegel, “Abschätzung von Einheiten”, Nachr. Akad. Wiss. Göttingen. II. Math.-Phys. Kl., 1969 (1969), 71–86 | MR | Zbl
[3] A. F. Lavrik, “Primechanie k teoreme Zigelya–Brauera otnositelno parametrov polei algebraicheskikh chisel”, Mat. zametki, 8:2 (1970), 259–263 | MR | Zbl
[4] R. Brauer, “On the zeta-functions of algebraic number fields”, Amer. J. Math., 69 (1947), 243–250 ; “II”, Amer. J. Math., 72 (1950), 739–746 | DOI | MR | Zbl | DOI | MR | Zbl
[5] H. Heilbronn, “On real zeros of Dedekind $\zeta$-functions”, Canad. J. Math., 25 (1973), 870–873 | DOI | MR | Zbl
[6] H. Stark, “Some effective cases of the Brauer–Siegel theorem”, Invent. Math., 23 (1974), 135–152 | DOI | MR | Zbl
[7] R. Remak, “Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers”, Compos. Math., 10 (1952), 245–285 | MR | Zbl
[8] R. Remak, “Über algebraische Zahlkörper mit schwachem Einheitsdefekt”, Compos. Math., 12 (1954), 35–80 | MR | Zbl
[9] N. C. Ankeny, R. Brauer, S. Chowla, “A note on the class-numbers of algebraic number fields”, Amer. J. Math., 78 (1956), 51–61 | DOI | MR | Zbl
[10] J. E. Littlewood, “On the class number of the corpus $P(\sqrt{-k})$”, Proc. London Math. Soc., 27 (1928), 358–372 | DOI | MR | Zbl
[11] H. L. Montgomery, P. J. Weinberger, “Real quadratic fields with large class number”, Math. Ann., 225 (1977), 173–176 | DOI | MR | Zbl
[12] H. Cohn, “Some algebraic number theory estimates based on the Dedekind eta-function”, Amer. J. Math., 78 (1956), 791–796 | DOI | MR | Zbl
[13] A. I. Vinogradov, “O chisle klassov idealov i gruppe klassov divizorov”, Izv. AN SSSR. Seriya mat., 27:3 (1963), 561–576 | MR | Zbl
[14] H. Cohen, A course in computational algebraic number theory, New York etc., 1996
[15] W. Duke, “Number fields with large class group”, Number theory, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., 2004, 117–126 | MR | Zbl
[16] W. Duke, “Extreme values of Artin $L$-functions and class numbers”, Compos. Math., 136 (2003), 103–115 | DOI | MR | Zbl