On the class numbers of algebraic number fields
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 193-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K$ be a number field of degree $n$ over $\mathbb Q$ and $d,h$, and $R$ be the absolute value of the discriminant, the class number, and the regulator, respectively, of $K$. It is known that if $K$ contains no quadratic subfield, then $$ hR\gg\frac{d^{1/2}}{\log d}, $$ where the implied constant depends only on $n$. In Theorem 1 this lower estimate is improved for pure cubic fields. Consider the family $\mathcal K_n$ where $K\in\mathcal K_n$ if $K$ is a totally real number field of degree $n$ whose normal closure has the symmetric group $S_n$ as its Galois group. Theorem 2: Fix $n\ge2$. There are infinitely many $K\in\mathcal K_n$ with $$ h\gg d^{1/2}(\log\log d)^{n-1}/(\log d)^n, $$ where the implied constant depends only on $n$. This is a somewhat greater improvement over W. Duke's analogous result with $h\gg d^{1/2}/(\log d)^n$ [MR 1966783 (2004g:11103)].
@article{ZNSL_2014_429_a13,
     author = {O. M. Fomenko},
     title = {On the class numbers of algebraic number fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--201},
     year = {2014},
     volume = {429},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the class numbers of algebraic number fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 193
EP  - 201
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/
LA  - ru
ID  - ZNSL_2014_429_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the class numbers of algebraic number fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 193-201
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/
%G ru
%F ZNSL_2014_429_a13
O. M. Fomenko. On the class numbers of algebraic number fields. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 193-201. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a13/

[1] E. Landau, “Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1918 (1918), 79–97 | Zbl

[2] C. L. Siegel, “Abschätzung von Einheiten”, Nachr. Akad. Wiss. Göttingen. II. Math.-Phys. Kl., 1969 (1969), 71–86 | MR | Zbl

[3] A. F. Lavrik, “Primechanie k teoreme Zigelya–Brauera otnositelno parametrov polei algebraicheskikh chisel”, Mat. zametki, 8:2 (1970), 259–263 | MR | Zbl

[4] R. Brauer, “On the zeta-functions of algebraic number fields”, Amer. J. Math., 69 (1947), 243–250 ; “II”, Amer. J. Math., 72 (1950), 739–746 | DOI | MR | Zbl | DOI | MR | Zbl

[5] H. Heilbronn, “On real zeros of Dedekind $\zeta$-functions”, Canad. J. Math., 25 (1973), 870–873 | DOI | MR | Zbl

[6] H. Stark, “Some effective cases of the Brauer–Siegel theorem”, Invent. Math., 23 (1974), 135–152 | DOI | MR | Zbl

[7] R. Remak, “Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers”, Compos. Math., 10 (1952), 245–285 | MR | Zbl

[8] R. Remak, “Über algebraische Zahlkörper mit schwachem Einheitsdefekt”, Compos. Math., 12 (1954), 35–80 | MR | Zbl

[9] N. C. Ankeny, R. Brauer, S. Chowla, “A note on the class-numbers of algebraic number fields”, Amer. J. Math., 78 (1956), 51–61 | DOI | MR | Zbl

[10] J. E. Littlewood, “On the class number of the corpus $P(\sqrt{-k})$”, Proc. London Math. Soc., 27 (1928), 358–372 | DOI | MR | Zbl

[11] H. L. Montgomery, P. J. Weinberger, “Real quadratic fields with large class number”, Math. Ann., 225 (1977), 173–176 | DOI | MR | Zbl

[12] H. Cohn, “Some algebraic number theory estimates based on the Dedekind eta-function”, Amer. J. Math., 78 (1956), 791–796 | DOI | MR | Zbl

[13] A. I. Vinogradov, “O chisle klassov idealov i gruppe klassov divizorov”, Izv. AN SSSR. Seriya mat., 27:3 (1963), 561–576 | MR | Zbl

[14] H. Cohen, A course in computational algebraic number theory, New York etc., 1996

[15] W. Duke, “Number fields with large class group”, Number theory, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., 2004, 117–126 | MR | Zbl

[16] W. Duke, “Extreme values of Artin $L$-functions and class numbers”, Compos. Math., 136 (2003), 103–115 | DOI | MR | Zbl