@article{ZNSL_2014_429_a12,
author = {O. M. Fomenko},
title = {On the {Dedekind} zeta {function.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--192},
year = {2014},
volume = {429},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a12/}
}
O. M. Fomenko. On the Dedekind zeta function. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 178-192. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a12/
[1] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1927
[2] W. G. Nowak, “On the distribution of integer ideals in algebraic number fields”, Math. Nachr., 161 (1993), 59–74 | DOI | MR | Zbl
[3] W. Müller, “Lattice points in large convex bodies”, Monatsh. Math., 128 (1999), 315–330 | DOI | MR | Zbl
[4] M. N. Huxley, N. Watt, “The number of ideals in a quadratic field”, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 157–165 | DOI | MR | Zbl
[5] W. Müller, “On the distribution of ideals in cubic number fields”, Monatsh. Math., 106 (1988), 211–219 | DOI | MR | Zbl
[6] O. M. Fomenko, “O dzeta-funktsii Dedekinda”, Zap. nauchn. semin. POMI, 418, 2013, 184–197
[7] E. I. Panteleeva, “K voprosu o probleme delitelei Dirikhle v chislovykh polyakh”, Mat. zametki, 44:4 (1988), 494–505 | MR | Zbl
[8] J. L. Hafner, “The distribution and average order of the coefficients of Dedekind $\zeta$ functions”, J. Number Theory, 17 (1983), 183–190 | DOI | MR | Zbl
[9] K. Girstmair, M. Kühleitner, W. Müller, W. G. Nowak, “The Piltz divisor problem in number fields: An improved lower bound by Soundararajan's method”, Acta Arithm., 117 (2005), 187–206 | DOI | MR | Zbl
[10] O. M. Fomenko, “Ekstremalnye znacheniya avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 404, 2012, 233–247 | MR
[11] N. Ishii, “Cusp forms of weight one, quartic reciprocity and elliptic curves”, Nagoya Math. J., 98 (1985), 117–137 | MR | Zbl
[12] H. Cohen, A course in computational algebraic number theory, New York etc., 2000
[13] T. Hiramatsu, N. Ishii, “Quartic residuacity and cusp forms of weight one”, Comment. Math. Univ. St. Paul., 34 (1985), 91–103 ; “Corrections”, Comment. Math. Univ. St. Paul., 35 (1986), 111 | MR | Zbl | MR | Zbl
[14] N. Ishii, “On the quartic residue symbol of totally positive quadratic units”, Tokyo J. Math., 9 (1986), 53–65 | DOI | MR | Zbl
[15] E. C. Titchmarsh, The theory of the Riemann zeta-functions, 2nd edn., revised by D. R. Heath-Brown, New York, 1986 | MR
[16] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl
[17] R. M. Kaufman, “Otsenka $L$-funktsii Gekke na polovinnoi pryamoi”, Zap. nauchn. semin. LOMI, 91, 1979, 40–51 | MR | Zbl
[18] D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line”, Acta Arithm., 49 (1988), 323–339 | MR | Zbl
[19] C. S. Yoganandra, “Transformation formula for exponential sums involving Fourier coefficients of modular forms”, Proc. Indian Acad. Sci. (Math. Sci.), 103 (1993), 1–25 | DOI | MR
[20] R. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-function”, J. London Math. Soc. (2), 10 (1975), 482–486 | DOI | MR | Zbl
[21] A. Good, “Approximative Funktionalgleichungen und Muttelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helvetici, 50 (1975), 327–361 | DOI | MR | Zbl
[22] A. Ivić, “Large values of certain number-theoretic error terms”, Acta Arithm., 56 (1990), 135–159 | MR | Zbl
[23] E. Artin, “Über eine neue Art von $L$-Reihen”, Abh. Math. Sem. Univ. Hamburg, 3 (1923), 89–108 | DOI | MR | Zbl
[24] A. Sankaranarayanan, J. Sengupta, “Omega theorems for a class of $L$-functions (A note on the Rankin–Selberg zeta-function)”, Funct. Approx. Comment. Math., 36 (2006), 119–131 | DOI | MR | Zbl
[25] K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$”, J. London Math. Soc. (2), 8 (1974), 683–690 | DOI | MR | Zbl
[26] R. Balasubramanian, K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. III”, Proc. Indian Acad. Sci. Sect. A, 86 (1977), 341–351 | MR | Zbl