On the Dedekind zeta function. II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 178-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A(x,K_n)$ the number of integer ideals of $K_n$ with norm $\leq x$. For $K_8=\mathbb Q(\sqrt{-1},\root4\of m)$, $K_8=\mathbb Q(\root4\of{\varepsilon_m})$ and $K_{16}=\mathbb Q(\sqrt{-1},\root4\of{\varepsilon_m})$, where $m$ is a positive square free integer and $\varepsilon_m$ denotes the fundamental unit of $\mathbb Q(\sqrt m)$, the author proves that $$ A(x,K_n)=\Lambda_nx+\Delta(x,K_n)(x,K_n),\quad\Delta(x,K_n)\ll x^{1-\frac3{n+2}+\varepsilon}. $$ This improves earlier results of E. Landau (1917) and W. G. Nowak (Math. Nachr. 161 (1993), 59–74) for the indicated special cases. The author also treats Titchmarch's phenomenon for $\zeta_{K_n}(s)$ and large values of $\Delta(x,K_n)$.
@article{ZNSL_2014_429_a12,
     author = {O. M. Fomenko},
     title = {On the {Dedekind} zeta {function.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--192},
     year = {2014},
     volume = {429},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the Dedekind zeta function. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 178
EP  - 192
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a12/
LA  - ru
ID  - ZNSL_2014_429_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the Dedekind zeta function. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 178-192
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a12/
%G ru
%F ZNSL_2014_429_a12
O. M. Fomenko. On the Dedekind zeta function. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 178-192. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a12/

[1] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1927

[2] W. G. Nowak, “On the distribution of integer ideals in algebraic number fields”, Math. Nachr., 161 (1993), 59–74 | DOI | MR | Zbl

[3] W. Müller, “Lattice points in large convex bodies”, Monatsh. Math., 128 (1999), 315–330 | DOI | MR | Zbl

[4] M. N. Huxley, N. Watt, “The number of ideals in a quadratic field”, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 157–165 | DOI | MR | Zbl

[5] W. Müller, “On the distribution of ideals in cubic number fields”, Monatsh. Math., 106 (1988), 211–219 | DOI | MR | Zbl

[6] O. M. Fomenko, “O dzeta-funktsii Dedekinda”, Zap. nauchn. semin. POMI, 418, 2013, 184–197

[7] E. I. Panteleeva, “K voprosu o probleme delitelei Dirikhle v chislovykh polyakh”, Mat. zametki, 44:4 (1988), 494–505 | MR | Zbl

[8] J. L. Hafner, “The distribution and average order of the coefficients of Dedekind $\zeta$ functions”, J. Number Theory, 17 (1983), 183–190 | DOI | MR | Zbl

[9] K. Girstmair, M. Kühleitner, W. Müller, W. G. Nowak, “The Piltz divisor problem in number fields: An improved lower bound by Soundararajan's method”, Acta Arithm., 117 (2005), 187–206 | DOI | MR | Zbl

[10] O. M. Fomenko, “Ekstremalnye znacheniya avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 404, 2012, 233–247 | MR

[11] N. Ishii, “Cusp forms of weight one, quartic reciprocity and elliptic curves”, Nagoya Math. J., 98 (1985), 117–137 | MR | Zbl

[12] H. Cohen, A course in computational algebraic number theory, New York etc., 2000

[13] T. Hiramatsu, N. Ishii, “Quartic residuacity and cusp forms of weight one”, Comment. Math. Univ. St. Paul., 34 (1985), 91–103 ; “Corrections”, Comment. Math. Univ. St. Paul., 35 (1986), 111 | MR | Zbl | MR | Zbl

[14] N. Ishii, “On the quartic residue symbol of totally positive quadratic units”, Tokyo J. Math., 9 (1986), 53–65 | DOI | MR | Zbl

[15] E. C. Titchmarsh, The theory of the Riemann zeta-functions, 2nd edn., revised by D. R. Heath-Brown, New York, 1986 | MR

[16] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl

[17] R. M. Kaufman, “Otsenka $L$-funktsii Gekke na polovinnoi pryamoi”, Zap. nauchn. semin. LOMI, 91, 1979, 40–51 | MR | Zbl

[18] D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line”, Acta Arithm., 49 (1988), 323–339 | MR | Zbl

[19] C. S. Yoganandra, “Transformation formula for exponential sums involving Fourier coefficients of modular forms”, Proc. Indian Acad. Sci. (Math. Sci.), 103 (1993), 1–25 | DOI | MR

[20] R. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-function”, J. London Math. Soc. (2), 10 (1975), 482–486 | DOI | MR | Zbl

[21] A. Good, “Approximative Funktionalgleichungen und Muttelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helvetici, 50 (1975), 327–361 | DOI | MR | Zbl

[22] A. Ivić, “Large values of certain number-theoretic error terms”, Acta Arithm., 56 (1990), 135–159 | MR | Zbl

[23] E. Artin, “Über eine neue Art von $L$-Reihen”, Abh. Math. Sem. Univ. Hamburg, 3 (1923), 89–108 | DOI | MR | Zbl

[24] A. Sankaranarayanan, J. Sengupta, “Omega theorems for a class of $L$-functions (A note on the Rankin–Selberg zeta-function)”, Funct. Approx. Comment. Math., 36 (2006), 119–131 | DOI | MR | Zbl

[25] K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$”, J. London Math. Soc. (2), 8 (1974), 683–690 | DOI | MR | Zbl

[26] R. Balasubramanian, K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. III”, Proc. Indian Acad. Sci. Sect. A, 86 (1977), 341–351 | MR | Zbl