The general coefficient theorem of Jenkins and the method of modules of curve families
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 140-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The extention of the module method in the case of extremal problems of general type is discussed. For these problems, associated quadratic differentials have poles of higth order.
@article{ZNSL_2014_429_a10,
     author = {G. V. Kuz'mina},
     title = {The general coefficient theorem of {Jenkins} and the method of modules of curve families},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--156},
     year = {2014},
     volume = {429},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a10/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - The general coefficient theorem of Jenkins and the method of modules of curve families
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 140
EP  - 156
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a10/
LA  - ru
ID  - ZNSL_2014_429_a10
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T The general coefficient theorem of Jenkins and the method of modules of curve families
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 140-156
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a10/
%G ru
%F ZNSL_2014_429_a10
G. V. Kuz'mina. The general coefficient theorem of Jenkins and the method of modules of curve families. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 140-156. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a10/

[1] J. A. Jenkins, “A general coefficient theorem”, Trans. Amer. Math. Soc., 77 (1954), 262–280 | DOI | MR | Zbl

[2] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.S.), 18, Springer-Verlag, 1958 ; 2nd ed. corrected, 1965; Dzh. Dzhenkins, Odnolistnye funktsii i konformnoe otobrazhenie, M., 1962 | MR | Zbl

[3] J. A. Jenkins, “An extension of the general coefficient theorem”, Trans. Amer. Math. Soc., 95 (1960), 387–407 | DOI | MR | Zbl

[4] J. A. Jenkins, “On the existence of certain general extremal metrics”, Ann. Math. (2), 65 (1957), 440–453 | DOI | MR

[5] J. A. Jenkins, “On the existence of certain general extremal metrics. II”, Tohoku Math. J. (2), 45:2 (1993), 249–257 | DOI | MR | Zbl

[6] J. A. Jenkins, “On a problem of Gronvall”, Ann. Math. (2), 59 (1954), 490–504 | DOI | MR | Zbl

[7] J. A. Jenkins, “The method of the extremal metric”, Handbook of complex analysis: geometric function theory, v. 1, North-Holland, Amsterdam, 2002, 393–456 | DOI | MR | Zbl

[8] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, 1984 | MR | Zbl

[9] G. V. Kuzmina, “Moduli semeistv krivykh i kvadratichnye differentsialy”, Trudy Matem. in-ta AN SSSR, 139, 1980, 3–241 | MR | Zbl

[10] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[11] E. G. Emelyanov, G. V. Kuzmina, “Teoremy ob ekstremalnom razbienii v semeistvakh sistem oblastei razlichnykh tipov”, Zap. nauchn. semin. POMI, 237, 1997, 74–104 | MR | Zbl

[12] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl

[13] A. Yu. Solynin, “Nekotorye ekstremalnye zadachi v klasse $\Sigma(\tau)$”, Zap. nauchn. semin. POMI, 196, 1991, 138–153 | MR | Zbl

[14] G. V. Kuzmina, “Zadachi ob ekstremalnom razbienii i otsenki koeffitsientov v klasse $\Sigma(r)$”, Zap. nauchn. semin. POMI, 196, 1991, 101–116 | MR | Zbl

[15] G. V. Kuzmina, “Metod modulei i ekstremalnye zadachi v klasse $\Sigma(r)$”, Zap. nauchn. semin. POMI, 418, 2013, 136–152

[16] N. Suita, “A distortion theorem of univalent functions related to symmetric three points”, Kodai Math. Sem. Rep., 14 (1962), 26–30 | DOI | MR | Zbl