@article{ZNSL_2014_429_a10,
author = {G. V. Kuz'mina},
title = {The general coefficient theorem of {Jenkins} and the method of modules of curve families},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--156},
year = {2014},
volume = {429},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a10/}
}
G. V. Kuz'mina. The general coefficient theorem of Jenkins and the method of modules of curve families. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 140-156. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a10/
[1] J. A. Jenkins, “A general coefficient theorem”, Trans. Amer. Math. Soc., 77 (1954), 262–280 | DOI | MR | Zbl
[2] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.S.), 18, Springer-Verlag, 1958 ; 2nd ed. corrected, 1965; Dzh. Dzhenkins, Odnolistnye funktsii i konformnoe otobrazhenie, M., 1962 | MR | Zbl
[3] J. A. Jenkins, “An extension of the general coefficient theorem”, Trans. Amer. Math. Soc., 95 (1960), 387–407 | DOI | MR | Zbl
[4] J. A. Jenkins, “On the existence of certain general extremal metrics”, Ann. Math. (2), 65 (1957), 440–453 | DOI | MR
[5] J. A. Jenkins, “On the existence of certain general extremal metrics. II”, Tohoku Math. J. (2), 45:2 (1993), 249–257 | DOI | MR | Zbl
[6] J. A. Jenkins, “On a problem of Gronvall”, Ann. Math. (2), 59 (1954), 490–504 | DOI | MR | Zbl
[7] J. A. Jenkins, “The method of the extremal metric”, Handbook of complex analysis: geometric function theory, v. 1, North-Holland, Amsterdam, 2002, 393–456 | DOI | MR | Zbl
[8] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, 1984 | MR | Zbl
[9] G. V. Kuzmina, “Moduli semeistv krivykh i kvadratichnye differentsialy”, Trudy Matem. in-ta AN SSSR, 139, 1980, 3–241 | MR | Zbl
[10] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl
[11] E. G. Emelyanov, G. V. Kuzmina, “Teoremy ob ekstremalnom razbienii v semeistvakh sistem oblastei razlichnykh tipov”, Zap. nauchn. semin. POMI, 237, 1997, 74–104 | MR | Zbl
[12] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl
[13] A. Yu. Solynin, “Nekotorye ekstremalnye zadachi v klasse $\Sigma(\tau)$”, Zap. nauchn. semin. POMI, 196, 1991, 138–153 | MR | Zbl
[14] G. V. Kuzmina, “Zadachi ob ekstremalnom razbienii i otsenki koeffitsientov v klasse $\Sigma(r)$”, Zap. nauchn. semin. POMI, 196, 1991, 101–116 | MR | Zbl
[15] G. V. Kuzmina, “Metod modulei i ekstremalnye zadachi v klasse $\Sigma(r)$”, Zap. nauchn. semin. POMI, 418, 2013, 136–152
[16] N. Suita, “A distortion theorem of univalent functions related to symmetric three points”, Kodai Math. Sem. Rep., 14 (1962), 26–30 | DOI | MR | Zbl