Salem's problem for the inverse Minkowski $?(t)$ function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $d_n$ be the coefficient Fourier–Stieltjes of the Minkowski $?(t)$ function – $$ d_n=\int^1_0\cos2\pi nt\,d?(t). $$ Salem's problem is as to whether $d_n$ tends to zero as $n\to\infty$. In the paper the coefficient Fourier $$ \alpha_n=\int^1_0\cos(2\pi n?(t))\,dt $$ is considered. It is proved that $\alpha_n$ does not tend to zero as $n\to\infty$.
@article{ZNSL_2014_429_a1,
     author = {E. P. Golubeva},
     title = {Salem's problem for the inverse {Minkowski} $?(t)$ function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--19},
     year = {2014},
     volume = {429},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Salem's problem for the inverse Minkowski $?(t)$ function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 11
EP  - 19
VL  - 429
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/
LA  - ru
ID  - ZNSL_2014_429_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Salem's problem for the inverse Minkowski $?(t)$ function
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 11-19
%V 429
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/
%G ru
%F ZNSL_2014_429_a1
E. P. Golubeva. Salem's problem for the inverse Minkowski $?(t)$ function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/

[1] H. Minkowski, Gesammelte Abhandlungen, v. 2, 1911, 50–51

[2] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[3] A. A. Dushistova, N. G. Moschevitin, “O proizvodnoi funktsii $?(x)$”, Fundament. i prikl. mat., 16:6 (2010), 33–44 | MR

[4] O. Jenkinson, “On the density of Hausdorff dimension of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4 (2004), 63–74 | DOI | MR

[5] A. Denjoy, “Sur une function réelle de Minkowski”, J. Math. Pures Appl., 17:2 (1938), 105–151 | Zbl

[6] E. P. Golubeva, “Sluchainye velichiny, svyazannykh s derevom Fareya”, Zap. nauchn. semin. POMI, 404, 2012, 61–74 | MR

[7] S. Yakubovich, “The Fourier–Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem”, C. R. Acad. Sci. Paris, Ser. I, 349:11–12 (2011), 633–636 | DOI | MR | Zbl

[8] G. Alkauskas, “The Minkowski $?(x)$ function and Salem's problem”, C. R. Acad. Sci. Paris, Ser. I, 350:3–4 (2012), 137–140 | DOI | MR | Zbl