@article{ZNSL_2014_429_a1,
author = {E. P. Golubeva},
title = {Salem's problem for the inverse {Minkowski} $?(t)$ function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {11--19},
year = {2014},
volume = {429},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/}
}
E. P. Golubeva. Salem's problem for the inverse Minkowski $?(t)$ function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/
[1] H. Minkowski, Gesammelte Abhandlungen, v. 2, 1911, 50–51
[2] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl
[3] A. A. Dushistova, N. G. Moschevitin, “O proizvodnoi funktsii $?(x)$”, Fundament. i prikl. mat., 16:6 (2010), 33–44 | MR
[4] O. Jenkinson, “On the density of Hausdorff dimension of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4 (2004), 63–74 | DOI | MR
[5] A. Denjoy, “Sur une function réelle de Minkowski”, J. Math. Pures Appl., 17:2 (1938), 105–151 | Zbl
[6] E. P. Golubeva, “Sluchainye velichiny, svyazannykh s derevom Fareya”, Zap. nauchn. semin. POMI, 404, 2012, 61–74 | MR
[7] S. Yakubovich, “The Fourier–Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem”, C. R. Acad. Sci. Paris, Ser. I, 349:11–12 (2011), 633–636 | DOI | MR | Zbl
[8] G. Alkauskas, “The Minkowski $?(x)$ function and Salem's problem”, C. R. Acad. Sci. Paris, Ser. I, 350:3–4 (2012), 137–140 | DOI | MR | Zbl