Salem's problem for the inverse Minkowski $?(t)$ function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $d_n$ be the coefficient Fourier–Stieltjes of the Minkowski $?(t)$ function – $$ d_n=\int^1_0\cos2\pi nt\,d?(t). $$ Salem's problem is as to whether $d_n$ tends to zero as $n\to\infty$. In the paper the coefficient Fourier $$ \alpha_n=\int^1_0\cos(2\pi n?(t))\,dt $$ is considered. It is proved that $\alpha_n$ does not tend to zero as $n\to\infty$.
@article{ZNSL_2014_429_a1,
     author = {E. P. Golubeva},
     title = {Salem's problem for the inverse {Minkowski} $?(t)$ function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {429},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Salem's problem for the inverse Minkowski $?(t)$ function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 11
EP  - 19
VL  - 429
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/
LA  - ru
ID  - ZNSL_2014_429_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Salem's problem for the inverse Minkowski $?(t)$ function
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 11-19
%V 429
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/
%G ru
%F ZNSL_2014_429_a1
E. P. Golubeva. Salem's problem for the inverse Minkowski $?(t)$ function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/