Salem's problem for the inverse Minkowski $?(t)$ function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $d_n$ be the coefficient Fourier–Stieltjes of the Minkowski $?(t)$ function –
$$
d_n=\int^1_0\cos2\pi nt\,d?(t).
$$
Salem's problem is as to whether $d_n$ tends to zero as $n\to\infty$.
In the paper the coefficient Fourier
$$
\alpha_n=\int^1_0\cos(2\pi n?(t))\,dt
$$
is considered. It is proved that $\alpha_n$ does not tend to zero as $n\to\infty$.
@article{ZNSL_2014_429_a1,
author = {E. P. Golubeva},
title = {Salem's problem for the inverse {Minkowski} $?(t)$ function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {11--19},
publisher = {mathdoc},
volume = {429},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/}
}
E. P. Golubeva. Salem's problem for the inverse Minkowski $?(t)$ function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 29, Tome 429 (2014), pp. 11-19. http://geodesic.mathdoc.fr/item/ZNSL_2014_429_a1/