Spline-wavelet decomposition on an interval
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 107-131
Cet article a éte moissonné depuis la source Math-Net.Ru
For the second-order spline-wavelet representations on an interval, the conditions under which decomposition operators are independent of the order of elementary operations are established. The notion of $k$-localized systems of functionals is introduced, and the operator set in which the embedding operator possesses a unique left inverse is studied.
@article{ZNSL_2014_428_a7,
author = {Yu. K. Dem'yanovich and B. G. Vager},
title = {Spline-wavelet decomposition on an interval},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--131},
year = {2014},
volume = {428},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/}
}
Yu. K. Dem'yanovich; B. G. Vager. Spline-wavelet decomposition on an interval. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 107-131. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/
[1] Yu. K. Demyanovich, O. M. Kosogorov, “Kalibrovochnye sootnosheniya dlya nepolinomialnykh splainov”, Probl. matem. analiza, 43, 2009, 3–19
[2] Yu. K. Demyanovich, “Negladkie splain-veivletnye razlozheniya i ikh svoistva”, Zap. nauchn. semin. POMI, 395, 2012, 31–60 | MR | Zbl
[3] Yu. K. Demyanovich, Teoriya splain-vspleskov, SPb., 2013, 526 pp.