Spline-wavelet decomposition on an interval
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 107-131

Voir la notice de l'article provenant de la source Math-Net.Ru

For the second-order spline-wavelet representations on an interval, the conditions under which decomposition operators are independent of the order of elementary operations are established. The notion of $k$-localized systems of functionals is introduced, and the operator set in which the embedding operator possesses a unique left inverse is studied.
@article{ZNSL_2014_428_a7,
     author = {Yu. K. Dem'yanovich and B. G. Vager},
     title = {Spline-wavelet decomposition on an interval},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--131},
     publisher = {mathdoc},
     volume = {428},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
AU  - B. G. Vager
TI  - Spline-wavelet decomposition on an interval
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 107
EP  - 131
VL  - 428
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/
LA  - ru
ID  - ZNSL_2014_428_a7
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%A B. G. Vager
%T Spline-wavelet decomposition on an interval
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 107-131
%V 428
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/
%G ru
%F ZNSL_2014_428_a7
Yu. K. Dem'yanovich; B. G. Vager. Spline-wavelet decomposition on an interval. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 107-131. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/