Spline-wavelet decomposition on an interval
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 107-131
Voir la notice de l'article provenant de la source Math-Net.Ru
For the second-order spline-wavelet representations on an interval, the conditions under which decomposition operators are independent of the order of elementary operations are established. The notion of $k$-localized systems of functionals is introduced, and the operator set in which the embedding operator possesses a unique left inverse is studied.
@article{ZNSL_2014_428_a7,
author = {Yu. K. Dem'yanovich and B. G. Vager},
title = {Spline-wavelet decomposition on an interval},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--131},
publisher = {mathdoc},
volume = {428},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/}
}
Yu. K. Dem'yanovich; B. G. Vager. Spline-wavelet decomposition on an interval. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 107-131. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a7/