Some parallel methods and technologies of domain decomposition
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 89-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The efficiency of two-level iterative processes in Krylov subspaces is investigated, as well as their parallelization in solving large sparse non-symmetric systems of linear algebraic equations arising from grid approximations of two-dimensional boundary value problems for diffusion-convection equations with different coefficient values. Special attention is paid to optimization of the subdomain intersection size, to the types of boundary conditions on adjacent boundaries in the domain decomposition method, and to the aggregation (or coarse grid correction) algorithms. Outer iterative process is based on the additive Schwarz algorithm, while parallel solution of the subdomain algebraic systems is effected by a direct or a preconditioned Krylov method. A crucial point in programming realization of these approaches is a technology of forming the so-called extended algebraic subsystems in the compressed sparse row format. A comparative analysis of the influence of various parameters is carried out basing on numerical experiments data. Some issues related to the scalability of parallelization are discussed.
@article{ZNSL_2014_428_a6,
     author = {Y. L. Gurieva and V. P. Il'in},
     title = {Some parallel methods and technologies of domain decomposition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--106},
     year = {2014},
     volume = {428},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a6/}
}
TY  - JOUR
AU  - Y. L. Gurieva
AU  - V. P. Il'in
TI  - Some parallel methods and technologies of domain decomposition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 89
EP  - 106
VL  - 428
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a6/
LA  - ru
ID  - ZNSL_2014_428_a6
ER  - 
%0 Journal Article
%A Y. L. Gurieva
%A V. P. Il'in
%T Some parallel methods and technologies of domain decomposition
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 89-106
%V 428
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a6/
%G ru
%F ZNSL_2014_428_a6
Y. L. Gurieva; V. P. Il'in. Some parallel methods and technologies of domain decomposition. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 89-106. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a6/

[1] V. P. Ilin, “Parallelnye metody i tekhnologii dekompozitsii oblastei”, Vestnik YuUrGU. Ser. vych. matem. i inform., 2012, no. 46(305), 31–44

[2] A. Toselli, O. Widlung, Domain Decomposition Methods – Algorithms and Theory, Springer Ser. Comput. Math., 34, 2005 | MR | Zbl

[3] M. Yu. Andreeva, V. P. Il'in, “Itskovich E. A. Two solvers for nonsymmetric SLAE”, Bull. NCC, ser. Num. Anal., 12 (2003), 1–16

[4] V. P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, izd. IVMiMG SO RAN, Novosibirsk, 2001, 318 pp.

[5] R. Bridson, C. Greif, “A multipreconditioned conjugate gradient algorithm”, SIAM J. Matrix Anal. Appl., 27:4 (2006), 1056–1068 | DOI | MR | Zbl

[6] V. P. Ilin, E. A. Itskovich, “O metodakh polusopryazhennykh napravlenii s dinamicheskim predobuslavlivaniem”, Sib. zh. industr. matem., 10:4 (2007), 41–54 | MR | Zbl

[7] A. Chapman, Y. Saad, “Deflated and augmented Krylov subspace technique”, Numer. Linear Algebra Appl., 4:1 (1997), 43–66 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] O. Dubois, M. J. Gander, A. St-Cyr, S. Loisel, D. Szyld, “The optimized Schwarz method with a coarse grid correction”, SIAM J. Sci. Comput., 34:1 (2012), 421–458 | DOI | MR

[9] URL: https://software.intel.com/en-us/intel-mkl

[10] URL: http://www.ddm.org

[11] D. S. Butyugin, Ya. L. Gureva, V. P. Ilin, D. V. Perevozkin, A. V. Petukhov, I. N. Skopin, “Funktsionalnost i tekhnologii algebraicheskikh reshatelei v biblioteke Krylov”, Vestnik YuUrGU. Ser. vych. matem. i inform., 2:3 (2013), 92–105

[12] URL: http://www2.sscc.ru

[13] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publ., New York, 1996 | Zbl