Some sharp estimates for typically real functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 81-88
Voir la notice du chapitre de livre
Let $T$ be the class of functions $f(z)=z+\sum^\infty_{n=r}c_nz^n$ regular and typically real in the disk $|z|<1$. Sharp estimates for the coefficients $c_3$ and $c_4$ in terms of the values $f(r)$, $0, are obtained.
@article{ZNSL_2014_428_a5,
author = {E. G. Goluzina},
title = {Some sharp estimates for typically real functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--88},
year = {2014},
volume = {428},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a5/}
}
E. G. Goluzina. Some sharp estimates for typically real functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 81-88. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a5/
[1] M. S. Robertson, “On the coefficients of a typically-real function”, Bull. Amer. Math. Soc., 41 (1935), 565–572 | DOI | MR | Zbl
[2] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. sb., 27(69):2 (1950), 201–218 | MR | Zbl
[3] Yu. E. Alenitsyn, “Ob oblastyakh izmeneniya sistem koeffitsentov funktsii, predstavimykh summoi integralov Stiltesa”, Vestn. LGU, ser. mat., mekh. i astr., 1962, no. 2(7), 25–41 | Zbl
[4] J. A. Jenkins, “Some problems for typically real functions”, Canad. J. Math., 13 (1961), 427–431 | DOI | MR