Graphs defined by orthogonality
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 49-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notion of graph generated by the mutual orthogonality relation for the elements of an associative ring is introduced. The main attention is paid to the commutative rings, the matrix ring over a field and its various subrings and subsets. In particular, the diameters of the orthogonality graphs of the full matrix algebra and its subsets consisting of diagonal, diagonalizable, triangularizable, and nilpotent matrices over an arbitrary field are computed.
@article{ZNSL_2014_428_a4,
     author = {B. R. Bakhadly and A. E. Guterman and O. V. Markova},
     title = {Graphs defined by orthogonality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--80},
     year = {2014},
     volume = {428},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a4/}
}
TY  - JOUR
AU  - B. R. Bakhadly
AU  - A. E. Guterman
AU  - O. V. Markova
TI  - Graphs defined by orthogonality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 49
EP  - 80
VL  - 428
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a4/
LA  - ru
ID  - ZNSL_2014_428_a4
ER  - 
%0 Journal Article
%A B. R. Bakhadly
%A A. E. Guterman
%A O. V. Markova
%T Graphs defined by orthogonality
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 49-80
%V 428
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a4/
%G ru
%F ZNSL_2014_428_a4
B. R. Bakhadly; A. E. Guterman; O. V. Markova. Graphs defined by orthogonality. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 49-80. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a4/

[1] A. Abdollahi, “Commuting graphs of full matrix rings over finite fields”, Linear Algebra Appl., 428 (2008), 2947–2954 | DOI | MR | Zbl

[2] A. Abdollahi, S. Akbari, H. R. Maimani, “Non-commuting graph of a group”, J. Algebra, 298:2 (2006), 468–492 | DOI | MR | Zbl

[3] S. Akbari, H. Bidkhori, A. Mohammadian, “Commuting graphs of matrix algebras”, Commun. Algebra, 36 (2008), 4020–4031 | DOI | MR | Zbl

[4] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, “On commuting graphs of semisimple rings”, Linear Algebra Appl., 390 (2004), 345–355 | DOI | MR | Zbl

[5] S. Akbari, H. R. Maimani, S. Yassemi, “When zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270 (2003), 169–180 | DOI | MR | Zbl

[6] S. Akbari, A. Mohammadian, “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[7] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296 (2006), 462–479 | DOI | MR | Zbl

[8] S. Akbari, A. Mohammadian, “On zero-divisor graphs of finite rings”, J. Algebra, 314 (2007), 168–184 | DOI | MR | Zbl

[9] S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, “On the diameters of commuting graphs”, Linear Algebra Appl., 418 (2006), 161–176 | DOI | MR | Zbl

[10] S. Akbari, P. Raja, “Commuting graphs of some subsets in simple rings”, Linear Algebra Appl., 416 (2006), 1038–1047 | DOI | MR | Zbl

[11] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, “The zero-divisor graph of a commutative ring. II”, Lect. Notes Pure Appl. Math., 220, Marcel Dekker, New York, 2001, 61–72 | MR | Zbl

[12] D. F. Anderson, R. Levy, J. Shapiro, “Zero-divisor graphs, von Neumann regular rings, and Boolean algebras”, J. Pure Appl. Algebra, 180:3 (2003), 221–241 | DOI | MR | Zbl

[13] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[14] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[15] J. K. Baksalary, J. Hauke, “A further algebraic version of Cochran's theorem and matrix partial orderings”, Linear Algebra Appl., 127 (1990), 157–169 | DOI | MR | Zbl

[16] I. Beck, “Coloring of Commutative Rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[17] G. Dolinar, B. Kuzma, P. Oblak, “On maximal distances in a commuting graph”, Electron. J. Linear Algebra, 23 (2012), 243–256 | MR | Zbl

[18] G. Dolinar, A. E. Guterman, B. Kuzma, P. Oblak, “Commuting graphs and extremal centralizers”, Ars Math. Contemp., 7:2 (2014), 453–459 | MR

[19] G. Dolinar, A. E. Guterman, B. Kuzma, P. Oblak, “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl

[20] D. Dolzan, P. Oblak, “Commuting graph of matrices over semirings”, Linear Algebra Appl., 435 (2011), 1657–1665 | DOI | MR | Zbl

[21] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR

[22] I. N. Herstein, Topics in Algebra, 2-nd edition, Wiley, 1975 | MR

[23] M. Giudici, A. Pope, “The diameters of commuting graphs of linear groups and matrix rings over the integers modulo $m$”, Australasian J. Combinatorics, 48 (2010), 221–230 | MR | Zbl

[24] L. C. Grove, Algebra, AP, New York, 1980

[25] A. E. Guterman, M. A. Efimov, “Monotonnye otobrazheniya matrits indeksa 1”, Zap. nauchn. semin. POMI, 405, 2012, 67–96 | MR

[26] A. Iranmanesh, A. Jafarzadeh, “On the commuting graph associated with the symmetric and alternating groups”, J. Alg. Appl., 7 (2008), 129–146 | DOI | MR | Zbl

[27] D. C. Kleinecke, “On operator commutators”, Proc. Amer. Math. Soc., 8 (1957), 535–536 | DOI | MR | Zbl

[28] T. G. Lucas, “The diameter of a zero divisor graph”, J. Algebra, 301 (2006), 174–193 | DOI | MR | Zbl

[29] A. R. Moghaddamfar, “About noncommuting graphs”, J. Sib. Math., 47:5 (2006), 911–914 | DOI | MR | Zbl

[30] A. Mohammadian, “On commuting graphs of finite matrix rings”, Commun. Algebra, 38 (2010), 988–994 | DOI | MR | Zbl

[31] P. G. Ovchinnikov, “Automorphisms of the poset of skew projections”, J. Funct. Analysis, 115 (1993), 184–189 | DOI | MR | Zbl

[32] F. V. Shirokov, “Dokazatelstvo gipotezy Kaplanskogo”, Usp. matem. nauk, 11:4(70) (1956), 167–168 | MR | Zbl

[33] D. A. Suprunenko, R. A. Tyshkevich, Perestanovochnye matritsy, Nauka i Tekhnika, Minsk, 1966 | MR

[34] P. Šemrl, “Order-preserving maps on the poset of idempotent matrices”, Acta Sci. Math. (Szeged), 69 (2003), 481–490 | MR | Zbl

[35] O. Taussky, “Commutativity of finite matrices”, Amer. Math. Monthly, 64 (1957), 239–255 | DOI | MR

[36] J. H. M. Wedderburn, Lectures on Matrices, Amer. Math. Society Colloquium Publications, 17, 1934 | Zbl