Multiple solution of systems of linear algebraic equations by an iterative method with recomputed preconditioner
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 42-48
Voir la notice de l'article provenant de la source Math-Net.Ru
An algorithm for multiple solution of systems of linear algebraic equations by preconditioned BiCGStab method is proposed. When the number of iterations for solving a current system becomes too large, the precontioner is recomputed. Results of numerical experiments on computing the capacitance matrices of a microstrip line in a wide range of its sizes, demonstrating the possibility of a considerable reduction of the total solution time, are presented.
@article{ZNSL_2014_428_a3,
author = {R. R. Akhunov and S. P. Kuksenko and T. R. Gazizov},
title = {Multiple solution of systems of linear algebraic equations by an iterative method with recomputed preconditioner},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--48},
publisher = {mathdoc},
volume = {428},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a3/}
}
TY - JOUR AU - R. R. Akhunov AU - S. P. Kuksenko AU - T. R. Gazizov TI - Multiple solution of systems of linear algebraic equations by an iterative method with recomputed preconditioner JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 42 EP - 48 VL - 428 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a3/ LA - ru ID - ZNSL_2014_428_a3 ER -
%0 Journal Article %A R. R. Akhunov %A S. P. Kuksenko %A T. R. Gazizov %T Multiple solution of systems of linear algebraic equations by an iterative method with recomputed preconditioner %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 42-48 %V 428 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a3/ %G ru %F ZNSL_2014_428_a3
R. R. Akhunov; S. P. Kuksenko; T. R. Gazizov. Multiple solution of systems of linear algebraic equations by an iterative method with recomputed preconditioner. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 42-48. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a3/