Bounds for the inverses of generalized Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 182-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers upper bounds for the infinity norm of the inverse for matrices in two subclasses of the class of (nonsingular) $H$-matrices, both of which contain the class of Nekrasov matrices. The first one has been introduced recently and consists of the so-called $S$-Nekrasov matrices. For $S$-Nekrasov matrices, the known bounds are improved. The second subclass consists of the so-called QN- (quasi-Nekrasov) matrices, which are defined in the present paper. For QN-matrices, an upper bound on the infinity norm of the inverses is established. It is shown that in application to Nekrasov matrices the new bounds are generally better than the known ones.
@article{ZNSL_2014_428_a12,
     author = {L. Yu. Kolotilina},
     title = {Bounds for the inverses of generalized {Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {182--195},
     year = {2014},
     volume = {428},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a12/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds for the inverses of generalized Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 182
EP  - 195
VL  - 428
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a12/
LA  - ru
ID  - ZNSL_2014_428_a12
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds for the inverses of generalized Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 182-195
%V 428
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a12/
%G ru
%F ZNSL_2014_428_a12
L. Yu. Kolotilina. Bounds for the inverses of generalized Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 182-195. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a12/

[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | MR | Zbl

[2] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102 | MR

[4] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120

[5] L. Yu. Kolotilina, “Nekotorye kharakterizatsii nekrasovskikh i $S$-nekrasovskikh matrits”, Zap. nauchn. semin. POMI, 428, 2014, 152–165

[6] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | DOI | MR | Zbl

[7] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | DOI | MR | Zbl

[8] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | DOI | MR | Zbl

[9] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR | Zbl

[10] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonal dominant and $M$-matrices”, Linear Algebra Appl., 169 (2009), 257–268 | DOI | MR

[11] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of $SDD$ and $\mathcal S-SDD$ matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl

[12] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[13] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[14] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[15] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl