@article{ZNSL_2014_428_a11,
author = {L. Yu. Kolotilina},
title = {Bounds for the determinants of {Nekrasov} and $S${-Nekrasov} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--181},
year = {2014},
volume = {428},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/}
}
L. Yu. Kolotilina. Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 166-181. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/
[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | MR | Zbl
[2] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102 | MR
[3] D. W. Bailey, D. E. Crabtree, “Bounds on determinants”, Linear Algebra Appl., 2 (1969), 303–309 | DOI | MR | Zbl
[4] J. L. Brenner, “A bound for a determinant with dominant main diagonal”, Proc. Amer. Math. Soc., 5 (1954), 631–634 | DOI | MR | Zbl
[5] L. Cvetković, V. Kostić, S. Rauški, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | DOI | MR | Zbl
[6] L. Cvetković, M. Nedović, “Special $H$-matrices and their Schur and diagonal-Schur complements”, Appl. Math. Comput., 208 (2009), 225–230 | DOI | MR | Zbl
[7] H.-B. Li, T.-Z. Huang, H. Li, “Some new results on determinantal inequalities and applications”, J. Ineq. Appl., 2010 (2010), Article ID 847357 | MR
[8] R. Oeder, “E 949”, Amer. Math. Monthly, 58 (1951), 36–37 | DOI | MR
[9] A. Ostrowski, “Sur la détermination des bornes inférieures pour une classe des déterminants”, Bull. Sci. Math. (2), 61 (1937), 19–32 | Zbl
[10] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl
[11] G. B. Price, “Bounds for determinants with dominant principal diagonal”, Proc. Amer. Math. Soc., 2 (1951), 497–502 | DOI | MR | Zbl
[12] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl
[13] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl