Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 166-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two-sided bounds on $|\det A|$ for Nekrasov and $S$-Nekrasov matriсes $A$ are obtained. It is shown that for Nekrasov matrices the new bounds improve the known bounds of Bailey and Crabtree. As to the $S$-Nekrasov matrices, introduced only recently, so far no bounds on their determinants have been suggested, as far as the author is aware.
@article{ZNSL_2014_428_a11,
     author = {L. Yu. Kolotilina},
     title = {Bounds for the determinants of {Nekrasov} and $S${-Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--181},
     year = {2014},
     volume = {428},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 166
EP  - 181
VL  - 428
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/
LA  - ru
ID  - ZNSL_2014_428_a11
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 166-181
%V 428
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/
%G ru
%F ZNSL_2014_428_a11
L. Yu. Kolotilina. Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 166-181. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/

[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | MR | Zbl

[2] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102 | MR

[3] D. W. Bailey, D. E. Crabtree, “Bounds on determinants”, Linear Algebra Appl., 2 (1969), 303–309 | DOI | MR | Zbl

[4] J. L. Brenner, “A bound for a determinant with dominant main diagonal”, Proc. Amer. Math. Soc., 5 (1954), 631–634 | DOI | MR | Zbl

[5] L. Cvetković, V. Kostić, S. Rauški, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | DOI | MR | Zbl

[6] L. Cvetković, M. Nedović, “Special $H$-matrices and their Schur and diagonal-Schur complements”, Appl. Math. Comput., 208 (2009), 225–230 | DOI | MR | Zbl

[7] H.-B. Li, T.-Z. Huang, H. Li, “Some new results on determinantal inequalities and applications”, J. Ineq. Appl., 2010 (2010), Article ID 847357 | MR

[8] R. Oeder, “E 949”, Amer. Math. Monthly, 58 (1951), 36–37 | DOI | MR

[9] A. Ostrowski, “Sur la détermination des bornes inférieures pour une classe des déterminants”, Bull. Sci. Math. (2), 61 (1937), 19–32 | Zbl

[10] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[11] G. B. Price, “Bounds for determinants with dominant principal diagonal”, Proc. Amer. Math. Soc., 2 (1951), 497–502 | DOI | MR | Zbl

[12] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[13] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl