Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 166-181
Voir la notice de l'article provenant de la source Math-Net.Ru
Two-sided bounds on $|\det A|$ for Nekrasov and $S$-Nekrasov matriсes $A$ are obtained. It is shown that for Nekrasov matrices the new bounds improve the known bounds of Bailey and Crabtree. As to the $S$-Nekrasov matrices, introduced only recently, so far no bounds on their determinants have been suggested, as far as the author is aware.
@article{ZNSL_2014_428_a11,
author = {L. Yu. Kolotilina},
title = {Bounds for the determinants of {Nekrasov} and $S${-Nekrasov} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--181},
publisher = {mathdoc},
volume = {428},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/}
}
L. Yu. Kolotilina. Bounds for the determinants of Nekrasov and $S$-Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 166-181. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a11/