Some characterizations of Nekrasov and $S$-Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 152-165
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that the Nekrasov and $S$-Nekrasov matrices form subclasses of (nonsingular) $H$-matrices. The paper presents some necessary and sufficient conditions for a square matrix with complex entries to be a Nekrasov and an $S$-Nekrasov matrix. In particular, characterizations of the Nekrasov and $S$-Nekrasov matrices in terms of the diagonal column scaling matrices transforming them into strictly diagonally dominant matrices are obtained.
@article{ZNSL_2014_428_a10,
author = {L. Yu. Kolotilina},
title = {Some characterizations of {Nekrasov} and $S${-Nekrasov} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--165},
publisher = {mathdoc},
volume = {428},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/}
}
L. Yu. Kolotilina. Some characterizations of Nekrasov and $S$-Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 152-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/