Some characterizations of Nekrasov and $S$-Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 152-165

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the Nekrasov and $S$-Nekrasov matrices form subclasses of (nonsingular) $H$-matrices. The paper presents some necessary and sufficient conditions for a square matrix with complex entries to be a Nekrasov and an $S$-Nekrasov matrix. In particular, characterizations of the Nekrasov and $S$-Nekrasov matrices in terms of the diagonal column scaling matrices transforming them into strictly diagonally dominant matrices are obtained.
@article{ZNSL_2014_428_a10,
     author = {L. Yu. Kolotilina},
     title = {Some characterizations of {Nekrasov} and $S${-Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--165},
     publisher = {mathdoc},
     volume = {428},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Some characterizations of Nekrasov and $S$-Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 152
EP  - 165
VL  - 428
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/
LA  - ru
ID  - ZNSL_2014_428_a10
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Some characterizations of Nekrasov and $S$-Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 152-165
%V 428
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/
%G ru
%F ZNSL_2014_428_a10
L. Yu. Kolotilina. Some characterizations of Nekrasov and $S$-Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 152-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/