Some characterizations of Nekrasov and $S$-Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 152-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that the Nekrasov and $S$-Nekrasov matrices form subclasses of (nonsingular) $H$-matrices. The paper presents some necessary and sufficient conditions for a square matrix with complex entries to be a Nekrasov and an $S$-Nekrasov matrix. In particular, characterizations of the Nekrasov and $S$-Nekrasov matrices in terms of the diagonal column scaling matrices transforming them into strictly diagonally dominant matrices are obtained.
@article{ZNSL_2014_428_a10,
     author = {L. Yu. Kolotilina},
     title = {Some characterizations of {Nekrasov} and $S${-Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--165},
     year = {2014},
     volume = {428},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Some characterizations of Nekrasov and $S$-Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 152
EP  - 165
VL  - 428
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/
LA  - ru
ID  - ZNSL_2014_428_a10
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Some characterizations of Nekrasov and $S$-Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 152-165
%V 428
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/
%G ru
%F ZNSL_2014_428_a10
L. Yu. Kolotilina. Some characterizations of Nekrasov and $S$-Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 152-165. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a10/

[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | MR | Zbl

[2] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102 | MR

[4] L. Yu. Kolotilina, “Ob uluchshenii otsenok Chistyakova dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 346, 2007, 103–118 | MR

[5] L. Yu. Kolotilina, “Kharakterizatsiya $PM$- i $PH$-matrits v terminakh diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 367, 2009, 110–120 | MR

[6] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979 | MR | Zbl

[7] L. Cvetković, V. Kostić, M. Kovac̆ević, T. Szulc, “Further results on $H$-matrices and their Schur complements”, Appl. Math. Comput., 198 (2008), 506–510 | DOI | MR | Zbl

[8] L. Cvetković, V. Kostić, S. Rauški, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | DOI | MR | Zbl

[9] L. Cvetković, V. Kostić, R. S. Varga, “A new Geršgorin-type eigenvalue inclusion set”, ETNA, 18 (2004), 73–80 | MR | Zbl

[10] L. Cvetković, M. Nedović, “Special $H$-matrices and their Schur and diagonal-Schur complements”, Appl. Math. Comput., 208 (2009), 225–230 | DOI | MR | Zbl

[11] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonally dominant and $M$-matrices”, Linear Algebra Appl., 169 (1992), 257–268 | DOI | MR | Zbl

[12] L. Yu. Kolotilina, “Bounds for the infinity norm of the inverse for certain $M$- and $H$-matrices”, Linear Algebra Appl., 430 (2009), 692–702 | DOI | MR | Zbl

[13] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[14] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[15] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl