Unitary automorphisms of the space of $(T+H)$-matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $TH_n$ be the space of $(T+H)$-matrices of order $n$. The paper considers the following question: Which unitary matrices $U$ satisfy the condition $\forall A\in TH_n\to U^*AU\in TH_n$? A criterion for verifying whether a given matrix $U$ has this property is proposed.
@article{ZNSL_2014_428_a0,
     author = {A. K. Abdikalykov},
     title = {Unitary automorphisms of the space of $(T+H)$-matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {428},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a0/}
}
TY  - JOUR
AU  - A. K. Abdikalykov
TI  - Unitary automorphisms of the space of $(T+H)$-matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 12
VL  - 428
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a0/
LA  - ru
ID  - ZNSL_2014_428_a0
ER  - 
%0 Journal Article
%A A. K. Abdikalykov
%T Unitary automorphisms of the space of $(T+H)$-matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-12
%V 428
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a0/
%G ru
%F ZNSL_2014_428_a0
A. K. Abdikalykov. Unitary automorphisms of the space of $(T+H)$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a0/