Unitary automorphisms of the space of $(T+H)$-matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 5-12
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $TH_n$ be the space of $(T+H)$-matrices of order $n$. The paper considers the following question: Which unitary matrices $U$ satisfy the condition $\forall A\in TH_n\to U^*AU\in TH_n$? A criterion for verifying whether a given matrix $U$ has this property is proposed.
@article{ZNSL_2014_428_a0,
author = {A. K. Abdikalykov},
title = {Unitary automorphisms of the space of $(T+H)$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--12},
year = {2014},
volume = {428},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a0/}
}
A. K. Abdikalykov. Unitary automorphisms of the space of $(T+H)$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVII, Tome 428 (2014), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2014_428_a0/
[1] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva tëplitsevykh matrits”, Dokl. Akad. Nauk, 456:4 (2014), 389–391 | DOI | Zbl
[2] Kh. D. Ikramov, “Unitarnye avtomorfizmy prostranstva gankelevykh matrits”, Matem. zametki, 96:5 (2014), 687–696 | DOI
[3] A. K. Abdikalykov, “Tsentrosimmetrichnost unitarnykh matrits, sokhranyayuschikh mnozhestvo $(T+H)$-matrits putëm podobiya”, Zh. vychisl. matem. matem. fiz., 55 (2015) (to appear)
[4] Kh. D. Ikramov, V. N. Chugunov, A. K. Abdikalykov, “O lokalnykh usloviyakh, kharakterizuyuschikh prostranstvo $(T+H)$-matrits”, Dokl. Akad. Nauk, 457:1 (2014), 17–18 | DOI | Zbl