On graphs which can be drawn on an orientable surface with small number of intersections on an edge
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 114-124

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ and $g$ be nonnegative integers. We call a graph $k$-nearly $g$-spherical, if it can be drawn on an orientable surface of genus $g$ such that each edge intersects at most $k$ other edges in inner points. It is proved that for $k\leq4$ the number of edges of a $k$-nearly $g$-spherical graph on $v$ vertices does not exceed $(k+3)(v+2g-2)$. It is also proved that the chromatic number of a $k$-nearly $g$-spherical graph does not exceed $\frac{2k+7+\sqrt{4k^2+12k+1+16(k+3)g}}2$.
@article{ZNSL_2014_427_a7,
     author = {O. E. Samoilova},
     title = {On graphs which can be drawn on an orientable surface with small number of intersections on an edge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--124},
     publisher = {mathdoc},
     volume = {427},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a7/}
}
TY  - JOUR
AU  - O. E. Samoilova
TI  - On graphs which can be drawn on an orientable surface with small number of intersections on an edge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 114
EP  - 124
VL  - 427
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a7/
LA  - ru
ID  - ZNSL_2014_427_a7
ER  - 
%0 Journal Article
%A O. E. Samoilova
%T On graphs which can be drawn on an orientable surface with small number of intersections on an edge
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 114-124
%V 427
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a7/
%G ru
%F ZNSL_2014_427_a7
O. E. Samoilova. On graphs which can be drawn on an orientable surface with small number of intersections on an edge. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 114-124. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a7/