Almost regular partition of a~graph
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $k\le8$ be a positive integer and $G$ be a graph on $n$ vertices such that each vertex degree of $G$ is at least $\frac{k-1}kn$. It is proved in the paper that the vertex set of $G$ can be partitioned into several cliques of size at most $k$, such that for each positive integer $k_0$ there is at most one clique of size $k_0$ in this partition.
			
            
            
            
          
        
      @article{ZNSL_2014_427_a6,
     author = {K. S. Savenkov},
     title = {Almost regular partition of a~graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {427},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/}
}
                      
                      
                    K. S. Savenkov. Almost regular partition of a~graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/
