Almost regular partition of a graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $k\le8$ be a positive integer and $G$ be a graph on $n$ vertices such that each vertex degree of $G$ is at least $\frac{k-1}kn$. It is proved in the paper that the vertex set of $G$ can be partitioned into several cliques of size at most $k$, such that for each positive integer $k_0 there is at most one clique of size $k_0$ in this partition.
@article{ZNSL_2014_427_a6,
     author = {K. S. Savenkov},
     title = {Almost regular partition of a~graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--113},
     year = {2014},
     volume = {427},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/}
}
TY  - JOUR
AU  - K. S. Savenkov
TI  - Almost regular partition of a graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 105
EP  - 113
VL  - 427
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/
LA  - ru
ID  - ZNSL_2014_427_a6
ER  - 
%0 Journal Article
%A K. S. Savenkov
%T Almost regular partition of a graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 105-113
%V 427
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/
%G ru
%F ZNSL_2014_427_a6
K. S. Savenkov. Almost regular partition of a graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/

[1] E. Szemerédi, G. Sárközy, J. Komlós, “Proof of the Seymour conjecture for large graphs”, Ann. Comb., 2:1 (1998), 43–60 | DOI | MR | Zbl

[2] E. Szemerédi, A. Hajnal, “Proof of a conjecture of P. Erdös”, Combinatorial theory and its applications, Proc. Colloq. (Balatonfüred, 1969), v. II, North-Holland, Amsterdam, 1970, 601–623 | MR