Almost regular partition of a graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $k\le8$ be a positive integer and $G$ be a graph on $n$ vertices such that each vertex degree of $G$ is at least $\frac{k-1}kn$. It is proved in the paper that the vertex set of $G$ can be partitioned into several cliques of size at most $k$, such that for each positive integer $k_0 there is at most one clique of size $k_0$ in this partition.
@article{ZNSL_2014_427_a6,
author = {K. S. Savenkov},
title = {Almost regular partition of a~graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--113},
year = {2014},
volume = {427},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/}
}
K. S. Savenkov. Almost regular partition of a graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/
[1] E. Szemerédi, G. Sárközy, J. Komlós, “Proof of the Seymour conjecture for large graphs”, Ann. Comb., 2:1 (1998), 43–60 | DOI | MR | Zbl
[2] E. Szemerédi, A. Hajnal, “Proof of a conjecture of P. Erdös”, Combinatorial theory and its applications, Proc. Colloq. (Balatonfüred, 1969), v. II, North-Holland, Amsterdam, 1970, 601–623 | MR