Almost regular partition of a~graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k\le8$ be a positive integer and $G$ be a graph on $n$ vertices such that each vertex degree of $G$ is at least $\frac{k-1}kn$. It is proved in the paper that the vertex set of $G$ can be partitioned into several cliques of size at most $k$, such that for each positive integer $k_0$ there is at most one clique of size $k_0$ in this partition.
@article{ZNSL_2014_427_a6,
     author = {K. S. Savenkov},
     title = {Almost regular partition of a~graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {427},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/}
}
TY  - JOUR
AU  - K. S. Savenkov
TI  - Almost regular partition of a~graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 105
EP  - 113
VL  - 427
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/
LA  - ru
ID  - ZNSL_2014_427_a6
ER  - 
%0 Journal Article
%A K. S. Savenkov
%T Almost regular partition of a~graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 105-113
%V 427
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/
%G ru
%F ZNSL_2014_427_a6
K. S. Savenkov. Almost regular partition of a~graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 105-113. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a6/