About vertices of degree~$6$ of $C_3$-critical minimal $6$-connected graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 89-104

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we research $C_3$-critical minimal $6$-connected graphs, i.e. such $6$-connected graphs, that lost there $6$-connectivity when we delete any edge and in which any clique on at most $3$ verticies is contained in a $6$-cutset. We prove that more than $\frac59$ of all verticies of a such graph has degree $6$.
@article{ZNSL_2014_427_a5,
     author = {A. V. Pastor},
     title = {About vertices of degree~$6$ of $C_3$-critical minimal $6$-connected graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {427},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a5/}
}
TY  - JOUR
AU  - A. V. Pastor
TI  - About vertices of degree~$6$ of $C_3$-critical minimal $6$-connected graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 89
EP  - 104
VL  - 427
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a5/
LA  - ru
ID  - ZNSL_2014_427_a5
ER  - 
%0 Journal Article
%A A. V. Pastor
%T About vertices of degree~$6$ of $C_3$-critical minimal $6$-connected graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 89-104
%V 427
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a5/
%G ru
%F ZNSL_2014_427_a5
A. V. Pastor. About vertices of degree~$6$ of $C_3$-critical minimal $6$-connected graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 89-104. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a5/