Deleting vertices from a~biconnected graph with preserving biconnectinity
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 66-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a biconnected graph and $W$ be a set which consists of inner vertices of parts-blocks of the graph $G$ and contains at least one vertex of each such part. It is proved that the graph $G-W$ is biconnected.
@article{ZNSL_2014_427_a3,
     author = {D. V. Karpov},
     title = {Deleting vertices from a~biconnected graph with preserving biconnectinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {427},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a3/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - Deleting vertices from a~biconnected graph with preserving biconnectinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 66
EP  - 73
VL  - 427
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a3/
LA  - ru
ID  - ZNSL_2014_427_a3
ER  - 
%0 Journal Article
%A D. V. Karpov
%T Deleting vertices from a~biconnected graph with preserving biconnectinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 66-73
%V 427
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a3/
%G ru
%F ZNSL_2014_427_a3
D. V. Karpov. Deleting vertices from a~biconnected graph with preserving biconnectinity. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 66-73. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a3/