The tree of cuts and minimal $k$-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 22-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A cut of a $k$-connected graph $G$ is its $k$-element cutset which contains at least one edge. The tree of cuts of a set $\mathfrak S$, consisting of pairwise independent cuts of a $k$-connected graph is defined as follows. Its vertices are cuts of the set $\mathfrak S$ and parts of the decomposition of $G$ by the cuts of $\mathfrak S$. A part $A$ is adjacent to a cut $S$ if and only if $A$ contains all vertices of $S$ and one end of each edge of $S$. It is proved that the graph described above is a tree and have properties similar to properties of classic tree of blocks and cutpoints. In the second part of the paper the tree of cuts is applied to study properties of minimal $k$-connected graphs for $k\le5$.
@article{ZNSL_2014_427_a1,
     author = {D. V. Karpov},
     title = {The tree of cuts and minimal $k$-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--40},
     year = {2014},
     volume = {427},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a1/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - The tree of cuts and minimal $k$-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 22
EP  - 40
VL  - 427
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a1/
LA  - ru
ID  - ZNSL_2014_427_a1
ER  - 
%0 Journal Article
%A D. V. Karpov
%T The tree of cuts and minimal $k$-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 22-40
%V 427
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a1/
%G ru
%F ZNSL_2014_427_a1
D. V. Karpov. The tree of cuts and minimal $k$-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 22-40. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a1/

[1] G. A. Dirac, “Minimally $2$-connected graphs”, J. Reine Angew. Math., 268 (1967), 204–216 | MR

[2] M. D. Plummer, “On minimal blocks”, Trans. Amer. Math. Soc., 134 (1968), 85–94 | DOI | MR | Zbl

[3] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[4] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224 | DOI | MR | Zbl

[5] W. Mader, “On vertices of degree $n$ in minimally $n$-connected graphs and digraphs”, Combinatorics, Paul Erdös is Eighty, v. 2, Budapest, 1996, 423–449 | MR | Zbl

[6] W. Mader, “Zur Struktur minimal n-fach zusammenhängender Graphen”, Abh. Math. Sem. Univ. Hamburg, 49 (1979), 49–69 | DOI | MR | Zbl

[7] F. Kharari, Teoriya grafov, Mir, Moskva, 1973 | MR

[8] D. V. Karpov, A. V. Pastor, “Struktura razbieniya trekhsvyaznogo grafa”, Zap. nauchn. semin. POMI, 391, 2011, 90–148 | MR

[9] D. V. Karpov, “Razdelyayuschie mnozhestva v $k$-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60 | MR | Zbl

[10] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[11] D. V. Karpov, “Minimalnye $k$-svyaznye grafy s minimalnym chislom vershin stepeni $k$”, Zap. nauchn. semin. POMI, 427, 2014, 41–65