On characteristic polynomial coefficients of the Laplace matrix of a weighted digraph and all minors theorem
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The simple proof of the expression of characteristic polynomial coefficients of the Laplace matrix of a weighted digraph in the form of sum over all incoming forests is submitted. The proof is based on the Laplace matrix expression as a product of weighted incidence matrices and investigation of relations between its minors and forests, which is useful to calculate all Laplace matrix minors.
@article{ZNSL_2014_427_a0,
     author = {V. A. Buslov},
     title = {On characteristic polynomial coefficients of the {Laplace} matrix of a~weighted digraph and all minors theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     year = {2014},
     volume = {427},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a0/}
}
TY  - JOUR
AU  - V. A. Buslov
TI  - On characteristic polynomial coefficients of the Laplace matrix of a weighted digraph and all minors theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 5
EP  - 21
VL  - 427
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a0/
LA  - ru
ID  - ZNSL_2014_427_a0
ER  - 
%0 Journal Article
%A V. A. Buslov
%T On characteristic polynomial coefficients of the Laplace matrix of a weighted digraph and all minors theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 5-21
%V 427
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a0/
%G ru
%F ZNSL_2014_427_a0
V. A. Buslov. On characteristic polynomial coefficients of the Laplace matrix of a weighted digraph and all minors theorem. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a0/

[1] G. Kirchhoff, “Über Die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird”, Ann. Phys. Chem., 72 (1847), 497–508 | DOI

[2] H. N. Gabow, Z. Galil, T. Spencer, R. E. Tarjan, “Efficient algorithms for finding minimum spanning trees in undirected and directed graphs”, Combinatorica, 6:2 (1986), 109–122 | DOI | MR | Zbl

[3] D. Cvetkovič, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, VEB Deutscher Verlag der Wissenschlaften, Berlin, 1980 | MR | Zbl

[4] V. A. Buslov, M. S. Bogdanov, V. A. Khudobakhshov, “O minimalnom ostovnom dereve dlya orgrafov s potentsialnymi vesami”, Vestnik SPbGU. Ser. 10, 2008, no. 3, 42–46

[5] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, M., 1979 | MR

[6] V. A. Buslov, K. A. Makarov, “Ierarkhiya masshtabov vremeni pri maloi diffuzii”, TMF, 76:2 (1988), 219–230 | MR | Zbl

[7] V. A. Buslov, K. A. Makarov, “Vremena zhizni i nizshie sobstvennye znacheniya operatora maloi diffuzii”, Mat. zametki, 51:1 (1992), 20–31 | MR | Zbl

[8] A. K. Kelmans, “O svoistvakh kharakteristicheskogo mnogochlena grafa”, Kibernetiku - na sluzhbu kommunizmu, Energiya, Moskva–Leningrad, 1967, 27–41 | MR

[9] M. Fiedler, J. Sedlaček, “O $w$-basich orientirovanych grafu”, Časopis Pěst. Mat., 83 (1958), 214–225 | MR | Zbl

[10] P. Yu. Chebotarëv, R. P. Agaev, Matrichnaya teorema o lesakh i laplasovskie matritsy orgrafov, LAP LAMBERT Academic Publising GmbH Co., 2011

[11] S. Chaiken, “A combinatorial proof of the all minors matrix tree theorem”, SIAM J. Algebraic Discrete Methods, 3:3 (1982), 319–329 | DOI | MR | Zbl

[12] U. Tatt, Teoriya grafov, Mir, M., 1988 | MR

[13] P. Chebotarev, R. Agaev, “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl

[14] V. A. Emelichev i dr., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl

[15] J. W. Moon, “Some determinant expansions and the matrix-tree theorem”, Discrete Mathematics, 124 (1994), 163–171 | DOI | MR | Zbl