Interference head wave in the problem of wave diffraction on homogenous halfplane
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 140-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the diffraction of waves produced by a point source by unhomogenous halfplane. The square of wave number inside unhomogenous region is supposed to decrease linearly with increasing the distance from the division boundary. Using the results obtained in [11] the Buldyrev head wave and whispering gallery waves structure analysis is performed.
@article{ZNSL_2014_426_a9,
     author = {A. A. Matskovskiy},
     title = {Interference head wave in the problem of wave diffraction on homogenous halfplane},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--149},
     year = {2014},
     volume = {426},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a9/}
}
TY  - JOUR
AU  - A. A. Matskovskiy
TI  - Interference head wave in the problem of wave diffraction on homogenous halfplane
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 140
EP  - 149
VL  - 426
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a9/
LA  - ru
ID  - ZNSL_2014_426_a9
ER  - 
%0 Journal Article
%A A. A. Matskovskiy
%T Interference head wave in the problem of wave diffraction on homogenous halfplane
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 140-149
%V 426
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a9/
%G ru
%F ZNSL_2014_426_a9
A. A. Matskovskiy. Interference head wave in the problem of wave diffraction on homogenous halfplane. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 140-149. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a9/

[1] L. M. Brekhovskikh, Yu. P. Lysanov, Teoreticheskie osnovy akustiki okeana, Gidrometeoizdat, L., 1982

[2] A. S. Alekseev, I. S. Volvovskii, N. I. Ermilova, P. V. Krauklis, V. Z. Ryaboi, “K voprosu o fizicheskoi prirode nekotorykh voln registriruemykh pri GSZ. II”, Izv. AN SSSR. Ser. geofiz., 1964, no. 1, 3–19

[3] V. S. Buldyrev, “Interferentsiya korotkikh voln v zadache difraktsii na neodnorodnom tsilindre proizvolnogo secheniya”, IVUZ, 10:5 (1967), 699–711

[4] V. S. Buldyrev, “Issledovanie funktsii Grina v zadache difraktsii na prozrachnom krugovom tsilindre. I”, Zh. vychisl. matem. fiz., 4, dopolnenie k No 4 (1964), 275–286 | MR | Zbl

[5] V. M. Babich, “On asymptotics of a wave field near the origin of an interference head wave”, Electromagnetics in Advanced Applications, 2007, 704–705

[6] V. M. Babich, “Boundary layer approach to construct an interference head wave”, Days on Diffraction, 2007, 19–21

[7] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[8] A. A. Matskovskii, “Korotkovolnovyi tochechnyi istochnik kolebanii vblizi neodnorodnoi poluploskosti”, Mat. voprosy teorii rasprostraneniya voln. 42, Zap. nauchn. sem. POMI, 409, 2013, 107–120 | MR

[9] V. A. Fok, Problemy difraktsii i rasprostraneniya elektromagnitnykh voln, Sovetskoe radio, M., 1970

[10] V. B. Philippov, “Point source field near concave boundary”, Mathematical problems in the theory of wave propagation. 37, Zap. Nauchn. Semin. POMI, 354, 2008, 212–219 | Zbl

[11] A. A. Matskovskii, Golovnaya volna interferentsionnogo tipa v zadache difraktsii voln tochechnogo istochnika na neodnorodnoi poluploskosti, 2014