@article{ZNSL_2014_426_a8,
author = {M. A. Lyalinov},
title = {Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--139},
year = {2014},
volume = {426},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/}
}
TY - JOUR AU - M. A. Lyalinov TI - Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 119 EP - 139 VL - 426 UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/ LA - ru ID - ZNSL_2014_426_a8 ER -
%0 Journal Article %A M. A. Lyalinov %T Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 119-139 %V 426 %U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/ %G ru %F ZNSL_2014_426_a8
M. A. Lyalinov. Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 119-139. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/
[1] A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic quarter space-revisited”, Wave Motion, 35:1 (2002), 91–98 | DOI | MR | Zbl
[2] A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic three-quarter space”, Wave Motion, 35:2 (2002), 99–106 | DOI | MR | Zbl
[3] K. Fujii, “Rayleigh-wave scattering of various wedge corners: Investigation in the wider range of wedge angles”, Bull. Seismol. Soc. Am., 84 (1994), 1916–1924
[4] J.-P. Croisille, G. Lebeau, Diffraction by an Immersed Elastic Wedge, Lecture notes in mathematics, 1723, Springer-Verlag, Berlin, 1999 | MR | Zbl
[5] V. V. Kamotski, G. Lebeau, “Diffraction by an elastic wedge with stress free boundary: Existence and uniqueness”, Proc. Roy. Soc. A, 462:2065 (2006), 289–317 | DOI | MR | Zbl
[6] A. D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge”, Proc. R. Soc. A, 455 (1999), 2655–2686 | DOI | MR | Zbl
[7] M. A. Salem, A. H. Kamel, A. V. Osipov, “Electromagnetic fields in the presence of an infinite dielectric wedge”, Proc. Roy. Soc. A, 462:2072 (2006), 2503–2522 | DOI | MR | Zbl
[8] D. S. Jones, “Rawlin's method and the diaphanous cone”, Quaterly Journal of Mechanics and Applied Mathematics, 53:1 (2000), 91–109 | DOI | MR | Zbl
[9] M. A. Lyalinov, “Acoustic scattering of a plane wave by a circular penetrable cone”, Wave Motion, 48:1 (2011), 62–82 | DOI | MR | Zbl
[10] J. M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997, (erratum in J. Phys. A, 32, L45)
[11] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012
[12] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181, (erratum: p. 177 replace $O(1/\cos(\pi(\nu-b)))$ by $O(\nu^d\sin(\pi\nu)/\cos(\pi(\nu-b)))$) | DOI | MR | Zbl
[13] J. M. L. Bernard, M. A. Lyalinov, “Electromagnetic scattering by a smooth convex impedance cone”, IMA J. Appl. Math., 69:3 (2004), 285–333, (multiply $\sin(\zeta)$ by $n/|n|$ in (D. 20) of appendix D) | DOI | MR | Zbl
[14] B. V. Budaev, Diffraction by wedges, Pitman Research Note in Mathematics, 322, Longman Scientific and technical, Essex, 1995 | MR | Zbl
[15] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2008
[16] Y. A. Kravtsov, N. Y. Zhu, Theory of Diffraction. Heuristic Approach, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2010
[17] J.-M. L. Bernard, “A spectral approach for scattering by impedance polygons”, Q. Jl. Mech. Appl. Math., 59:4 (2006), 517–550 | DOI | MR | Zbl
[18] A. S. Fokas, “Two Dimensional Linear PDE's in a Convex Polygon”, Proc. R. Soc. Lond. A, 457 (2001), 371–393 | DOI | MR | Zbl
[19] B. V. Budaev, D. B. Bogy, “Diffraction by a convex polygon with side-wise constant impedance”, Wave Motion, 43:8 (2006), 631–645 | DOI | MR | Zbl
[20] D. S. Jones, “The Kontorovich–Lebedev transform”, J. Inst. Maths Applic., 26 (1980), 133–141 | DOI | MR | Zbl
[21] A. D. Avdeev, S. M. Grudskii, “O modifitsirovannom preobrazovanii Kontorovicha–Lebedeva i ego prilozhenii k zadache difraktsii tsilindricheskoi volny na idealno provodyaschem kline”, Radiotekhnika i elektronika, 39:7 (1994), 1081–1089
[22] I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980
[23] L. S. Rakovschik, “Sistemy integralnykh uranenii s pochti raznostnymi operatorami”, Sibirskii Mat. Zhurnal, 3:2 (1962), 250–255
[24] V. M. Babich, D. B. Dement'ev, B. A. Samokish, V. P. Smyshlyaev, “On Evaluation of the Diffraction Coefficients for Arbitrary “Nonsingular” Directions of a Smooth Convex Cone”, SIAM J. Appl. Math., 60:2 (2000), 536–573 | DOI | MR | Zbl