Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 119-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work we study the acoustic problem of diffraction by two wedges with different wave velocities. It is assumed that the wedges with parallel edges have a common part of the boundary and the second wedge is shifted with respect of the first one in the orthogonal to the edges direction along the common part of the boundary. The wave field is governed by the Helmholtz equations. On the the polygonal boundary, separating these shifted wedges from the exterior, the Dirichlet boundary condition is satisfied. The wave field is excited by an infinite filamentary source which is parallel to the edges. In these conditions the problem is effectively two dimensional. We apply Kontorovich–Lebedev transform in order to separate radial and angular variables and to reduce the problem at hand to integral equations of the second kind for the so called spectral functions. The kernel of the integral equations given in the form of integral of the Macdonald functions product is analytically transformed to a simplified expression. For the problem at hand some reductions of the equations are also discussed for the limiting or degenerate values of parameters. Exploiting an alternative integral representation of the Sommerfeld type, expressions for the scattering diagram is then given in terms of the spectral functions.
@article{ZNSL_2014_426_a8,
     author = {M. A. Lyalinov},
     title = {Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--139},
     year = {2014},
     volume = {426},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 119
EP  - 139
VL  - 426
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/
LA  - ru
ID  - ZNSL_2014_426_a8
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 119-139
%V 426
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/
%G ru
%F ZNSL_2014_426_a8
M. A. Lyalinov. Integral equations and scattering diagram in the problem of diffraction by two wedges shifted along the line of contact with polygonal boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 119-139. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a8/

[1] A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic quarter space-revisited”, Wave Motion, 35:1 (2002), 91–98 | DOI | MR | Zbl

[2] A. K. Gautesen, “Scattering of a Rayleigh wave by an elastic three-quarter space”, Wave Motion, 35:2 (2002), 99–106 | DOI | MR | Zbl

[3] K. Fujii, “Rayleigh-wave scattering of various wedge corners: Investigation in the wider range of wedge angles”, Bull. Seismol. Soc. Am., 84 (1994), 1916–1924

[4] J.-P. Croisille, G. Lebeau, Diffraction by an Immersed Elastic Wedge, Lecture notes in mathematics, 1723, Springer-Verlag, Berlin, 1999 | MR | Zbl

[5] V. V. Kamotski, G. Lebeau, “Diffraction by an elastic wedge with stress free boundary: Existence and uniqueness”, Proc. Roy. Soc. A, 462:2065 (2006), 289–317 | DOI | MR | Zbl

[6] A. D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge”, Proc. R. Soc. A, 455 (1999), 2655–2686 | DOI | MR | Zbl

[7] M. A. Salem, A. H. Kamel, A. V. Osipov, “Electromagnetic fields in the presence of an infinite dielectric wedge”, Proc. Roy. Soc. A, 462:2072 (2006), 2503–2522 | DOI | MR | Zbl

[8] D. S. Jones, “Rawlin's method and the diaphanous cone”, Quaterly Journal of Mechanics and Applied Mathematics, 53:1 (2000), 91–109 | DOI | MR | Zbl

[9] M. A. Lyalinov, “Acoustic scattering of a plane wave by a circular penetrable cone”, Wave Motion, 48:1 (2011), 62–82 | DOI | MR | Zbl

[10] J. M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997, (erratum in J. Phys. A, 32, L45)

[11] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012

[12] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181, (erratum: p. 177 replace $O(1/\cos(\pi(\nu-b)))$ by $O(\nu^d\sin(\pi\nu)/\cos(\pi(\nu-b)))$) | DOI | MR | Zbl

[13] J. M. L. Bernard, M. A. Lyalinov, “Electromagnetic scattering by a smooth convex impedance cone”, IMA J. Appl. Math., 69:3 (2004), 285–333, (multiply $\sin(\zeta)$ by $n/|n|$ in (D. 20) of appendix D) | DOI | MR | Zbl

[14] B. V. Budaev, Diffraction by wedges, Pitman Research Note in Mathematics, 322, Longman Scientific and technical, Essex, 1995 | MR | Zbl

[15] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2008

[16] Y. A. Kravtsov, N. Y. Zhu, Theory of Diffraction. Heuristic Approach, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, 2010

[17] J.-M. L. Bernard, “A spectral approach for scattering by impedance polygons”, Q. Jl. Mech. Appl. Math., 59:4 (2006), 517–550 | DOI | MR | Zbl

[18] A. S. Fokas, “Two Dimensional Linear PDE's in a Convex Polygon”, Proc. R. Soc. Lond. A, 457 (2001), 371–393 | DOI | MR | Zbl

[19] B. V. Budaev, D. B. Bogy, “Diffraction by a convex polygon with side-wise constant impedance”, Wave Motion, 43:8 (2006), 631–645 | DOI | MR | Zbl

[20] D. S. Jones, “The Kontorovich–Lebedev transform”, J. Inst. Maths Applic., 26 (1980), 133–141 | DOI | MR | Zbl

[21] A. D. Avdeev, S. M. Grudskii, “O modifitsirovannom preobrazovanii Kontorovicha–Lebedeva i ego prilozhenii k zadache difraktsii tsilindricheskoi volny na idealno provodyaschem kline”, Radiotekhnika i elektronika, 39:7 (1994), 1081–1089

[22] I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980

[23] L. S. Rakovschik, “Sistemy integralnykh uranenii s pochti raznostnymi operatorami”, Sibirskii Mat. Zhurnal, 3:2 (1962), 250–255

[24] V. M. Babich, D. B. Dement'ev, B. A. Samokish, V. P. Smyshlyaev, “On Evaluation of the Diffraction Coefficients for Arbitrary “Nonsingular” Directions of a Smooth Convex Cone”, SIAM J. Appl. Math., 60:2 (2000), 536–573 | DOI | MR | Zbl