Integral symmetry for the confluent Heun equation with added apparent singularity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 34-48

Voir la notice de l'article provenant de la source Math-Net.Ru

Confluent Heun equation with added apparent singular point is under consideration. New integral transform connecting solutions of this equation with different parameters is obtained. Kernel of this transform is a suitable solution of the confluent hypergeometric equation.
@article{ZNSL_2014_426_a4,
     author = {A. Ya. Kazakov},
     title = {Integral symmetry for the confluent {Heun} equation with added apparent singularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {426},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a4/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
TI  - Integral symmetry for the confluent Heun equation with added apparent singularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 34
EP  - 48
VL  - 426
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a4/
LA  - ru
ID  - ZNSL_2014_426_a4
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%T Integral symmetry for the confluent Heun equation with added apparent singularity
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 34-48
%V 426
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a4/
%G ru
%F ZNSL_2014_426_a4
A. Ya. Kazakov. Integral symmetry for the confluent Heun equation with added apparent singularity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 34-48. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a4/