Plane waves, Batmen's solutions and sources at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 23-33
Cet article a éte moissonné depuis la source Math-Net.Ru
For threedimensional wave equation two equivalent statements are proved: 1) plane waves are not generated by a source at infinity, 2) Bateman's solution (the solution that obtained by the application of Kelvin–Bateman transformation to a plane wave) is the solution to wave equation everywhere in $\mathbb R^4$.
@article{ZNSL_2014_426_a3,
author = {A. S. Blagovestchensky},
title = {Plane waves, {Batmen's} solutions and sources at infinity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {23--33},
year = {2014},
volume = {426},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/}
}
A. S. Blagovestchensky. Plane waves, Batmen's solutions and sources at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 23-33. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/
[1] A. S. Blagoveshchensky, “On wave fields generated by the sources disposed in the infinity”, J. Inv. Ill-posed Problems, 16 (2008), 825–835 | DOI | MR | Zbl
[2] V. I. Smirnov, Kurs vysshei matematiki, v. IV, ch. 1, Nauka, M., 1981
[3] H. Bateman, “The conformal transformations in four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 7 (1909), 70–89 | DOI | MR | Zbl
[4] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[5] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986