Plane waves, Batmen's solutions and sources at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 23-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For threedimensional wave equation two equivalent statements are proved: 1) plane waves are not generated by a source at infinity, 2) Bateman's solution (the solution that obtained by the application of Kelvin–Bateman transformation to a plane wave) is the solution to wave equation everywhere in $\mathbb R^4$.
@article{ZNSL_2014_426_a3,
     author = {A. S. Blagovestchensky},
     title = {Plane waves, {Batmen's} solutions and sources at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--33},
     year = {2014},
     volume = {426},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/}
}
TY  - JOUR
AU  - A. S. Blagovestchensky
TI  - Plane waves, Batmen's solutions and sources at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 23
EP  - 33
VL  - 426
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/
LA  - ru
ID  - ZNSL_2014_426_a3
ER  - 
%0 Journal Article
%A A. S. Blagovestchensky
%T Plane waves, Batmen's solutions and sources at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 23-33
%V 426
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/
%G ru
%F ZNSL_2014_426_a3
A. S. Blagovestchensky. Plane waves, Batmen's solutions and sources at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 23-33. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/

[1] A. S. Blagoveshchensky, “On wave fields generated by the sources disposed in the infinity”, J. Inv. Ill-posed Problems, 16 (2008), 825–835 | DOI | MR | Zbl

[2] V. I. Smirnov, Kurs vysshei matematiki, v. IV, ch. 1, Nauka, M., 1981

[3] H. Bateman, “The conformal transformations in four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 7 (1909), 70–89 | DOI | MR | Zbl

[4] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[5] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986