Plane waves, Batmen's solutions and sources at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 23-33

Voir la notice de l'article provenant de la source Math-Net.Ru

For threedimensional wave equation two equivalent statements are proved: 1) plane waves are not generated by a source at infinity, 2) Bateman's solution (the solution that obtained by the application of Kelvin–Bateman transformation to a plane wave) is the solution to wave equation everywhere in $\mathbb R^4$.
@article{ZNSL_2014_426_a3,
     author = {A. S. Blagovestchensky},
     title = {Plane waves, {Batmen's} solutions and sources at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {426},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/}
}
TY  - JOUR
AU  - A. S. Blagovestchensky
TI  - Plane waves, Batmen's solutions and sources at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 23
EP  - 33
VL  - 426
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/
LA  - ru
ID  - ZNSL_2014_426_a3
ER  - 
%0 Journal Article
%A A. S. Blagovestchensky
%T Plane waves, Batmen's solutions and sources at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 23-33
%V 426
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/
%G ru
%F ZNSL_2014_426_a3
A. S. Blagovestchensky. Plane waves, Batmen's solutions and sources at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 23-33. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a3/