Dynamical inverse problem for the Lame type system (the BC-method)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 218-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, for a Lame-type system, the inverse problem on recovering the fast and slow wave velocities from the boundary dynamical data (the response operator) is solved. The velocities are determined in the near-boundary domain, the depth of determination being proportional to the observation time. We use the BC-method, which is an approach to inverse problems based on their connections with boundary control theory.
@article{ZNSL_2014_426_a13,
     author = {V. G. Fomenko},
     title = {Dynamical inverse problem for the {Lame} type system (the {BC-method)}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--259},
     year = {2014},
     volume = {426},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a13/}
}
TY  - JOUR
AU  - V. G. Fomenko
TI  - Dynamical inverse problem for the Lame type system (the BC-method)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 218
EP  - 259
VL  - 426
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a13/
LA  - ru
ID  - ZNSL_2014_426_a13
ER  - 
%0 Journal Article
%A V. G. Fomenko
%T Dynamical inverse problem for the Lame type system (the BC-method)
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 218-259
%V 426
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a13/
%G ru
%F ZNSL_2014_426_a13
V. G. Fomenko. Dynamical inverse problem for the Lame type system (the BC-method). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 218-259. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a13/

[1] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, Moskva, 1972 | MR

[2] M. I. Belishev, “Ob unitarnom preobrazovanii v prostranstve $L_2(\Omega;\mathbb R^3)$, svyazannom s razlozheniem Veilya”, Zap. Nauchn. Semin. POMI, 275, 2001, 25–40 | MR | Zbl

[3] M. I. Belishev, “Dynamical inverse problem for a Lame type system”, J. Inv. Ill-Posed Problems, 14:8 (2006), 751–766 | DOI | MR | Zbl

[4] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inv. Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[5] M. I. Belishev, A. S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, Izd-vo S.-Peterburgskogo un-ta, SPb., 1999

[6] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[7] M. I. Belishev, A. K. Glasman, “K proektirovaniyu v prostranstve solenoidalnykh vektornykh polei”, Zap. Nauchn.Semin. POMI, 257, 1999, 16–43 | MR | Zbl

[8] M. I. Belishev, A. K. Glasman, “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (VS-metod)”, Algebra i analiz, 12:2 (2000), 131–187 | MR | Zbl

[9] M. I. Belishev, I. Lasiecka, “The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation”, J. ESAIM: Control, Optimisation and Calculues of Variations, 8 (2002), 143–167 | DOI | MR | Zbl

[10] M. I. Belishev, V. G. Fomenko, “O dostizhimykh mnozhestvakh dinamicheskoi sistemy tipa Lame”, Probl. mat. analiza, 70, 2013, 57–70 | MR | Zbl

[11] E. B. Bykhovskii, N. V. Smirnov, “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Tr. Matem. in-ta AN SSSR, 59, 1960, 5–36 | MR | Zbl

[12] M. Eller, “Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss–Sakamoto condition”, Appl. Math., 35 (2008), 323–333 | MR | Zbl

[13] M. Eller, V. Isakov, G. Nakamura, D. Tataru, “Uniqueness and stability in the Cauchy problem for Maxwell's and elasticity systems”, Nonlinear PDE and Applications, College de France Seminar, Vol. 14, Studies in Mathematics and its applications, 31, eds. D. Cioranescu, J.-L. Lions, North-Holland, Elsevier Science, 2002, 329–349 | DOI | MR

[14] V. G. Fomenko, “Operator reaktsii sistemy Lame”, Slozhnye sistemy i protsessy, 1:17 (2010), 13–18

[15] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, Moskva, 1970 | MR

[16] O. A. Ladyzhenskaya, V. A. Solonnikov, “O printsipe linearizatsii i invariantnykh mnogoobraziyakh dlya zadachi magnitogidrodinamiki”, Zap. Nauchn. Semin. LOMI, 38, 1973, 46–93 | MR | Zbl

[17] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, Moskva, 1971 | Zbl

[18] J. Sylvester, G. Uhlmann, “Inverse boundary value problems at the boundary-continuous dependence”, Comm. Pure Appl. Math., 41 (1988), 197–219 | DOI | MR

[19] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matemaicheskoi fiziki, izd-vo MGU, Moskva, 1982 | MR | Zbl

[20] M. I. Belishev, A. P. Kachalov, “Operatornyi integral v mnogomernoi spektralnoi obratnoi zadache”, Zap. Nauchn. Semin. POMI, 215, 1994, 9–37 | MR | Zbl