Some relations between the spheroidal and spherical wave functions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 203-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find new relations between the spheroidal and spherical wave functions as well as between the spheroidal functions related to different spheroidal coordinate systems. The systems should have a common origin of coordinate and a common symmetry axis of coordinate surfaces. The applicability ranges of the relations obtained are discussed. Numerical test calculations have demonstrated the high efficiency of the relations in particular those for wave functions including the radial functions of the first kind. As a particular case we consider the relations between the prolate and oblate spheroidal wave functions including the radial functions of the first and second kinds. These relations are necessary to solve the light scattering problem for nonconfocal layered spheroidal particles.
@article{ZNSL_2014_426_a12,
     author = {V. G. Farafonov and N. V. Voshchinnikov and E. G. Semenova},
     title = {Some relations between the spheroidal and spherical wave functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--217},
     year = {2014},
     volume = {426},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a12/}
}
TY  - JOUR
AU  - V. G. Farafonov
AU  - N. V. Voshchinnikov
AU  - E. G. Semenova
TI  - Some relations between the spheroidal and spherical wave functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 203
EP  - 217
VL  - 426
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a12/
LA  - ru
ID  - ZNSL_2014_426_a12
ER  - 
%0 Journal Article
%A V. G. Farafonov
%A N. V. Voshchinnikov
%A E. G. Semenova
%T Some relations between the spheroidal and spherical wave functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 203-217
%V 426
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a12/
%G ru
%F ZNSL_2014_426_a12
V. G. Farafonov; N. V. Voshchinnikov; E. G. Semenova. Some relations between the spheroidal and spherical wave functions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 203-217. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a12/

[1] S. Asano, G. Yamamoto, “Light scattering by spheroidal particle.”, Appl. Opt., 14 (1975), 29–49 | DOI

[2] N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles”, Astrophys. Space Sci., 204 (1993), 19–86 | DOI

[3] V. G. Farafonov, “A unified approach, using spheroidal functions, for solving the problem of light scattering by a axisymmetric particles”, J. Math. Sci., 175:6 (2011), 698–723 | DOI | MR | Zbl

[4] V. G. Farafonov, “Application of non-orthogonal bases in the theory of light scattering by spheroidal particles.”, Light Scattering Reviews, 8, ed. A. A. Kokhanovsky, Springer-Praxis, Berlin, 2013, 189–266

[5] A. Vinokurov, V. Farafonov, V. Il'in, “Separation of variables method for multilayered nonspherical particles”, JQSRT, 110 (2009), 1356–1368 | DOI

[6] V. G. Farafonov, V. B. Ilin, “O primenimosti sfericheskogo bazisa dlya sferoidalnykh sloistykh rasseivatelei”, Opt. i spektr., 115 (2013), 836–843 | DOI

[7] T. Onaka, “Light scattering by spheroidal grains”, Ann Tokyo Astron. Observ., 18 (1980), 1–54

[8] V. G. Farafonov, N. V. Voshchinnikov, V. V. Somsikov, “Light scattering by a core-mantle spheroidal particle”, Appl. Opt., 35 (1996), 5412–5426 | DOI

[9] I. Gurwich, M. Kleiman, N. Shiloah, A. Cohen, “Scattering of electromagnetic radiation by multilayered spheroidal particles: recursive procedure”, Appl. Opt., 39 (2000), 470–477 | DOI

[10] I. Gurwich, M. Kleiman, N. Shiloah, D. Oaknin, “Scattering by an arbitrary multi-layered spheroid: theory and numerical results”, JQSRT, 79–80 (2003), 649–653 | DOI

[11] V. Farafonov, N. Voshchinnikov, “Light scattering by a multilayered spheroidal particle”, Appl. Opt., 51 (2012), 1586–1597 | DOI

[12] Y. Han, H. Zhang, X. Sun, “Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries”, Appl. Phys. B, 84 (2006), 485–492 | DOI

[13] V. I. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976 | MR

[14] K. Flammer, Tablitsy volnovykh sferoidalnykh funktsii, VTs AN SSSR, M., 1962 | MR

[15] N. V. Voschinnikov, V. G. Farafonov, “Vychislenie vytyanutykh radialnykh sferoidalnykh funktsii s ispolzovaniem razlozheniya Yaffe”, ZhVMiMF, 43:9 (2003), 1353–1363 | MR | Zbl