On excitation coefficient of a wave propagating along the edge of an elastic wedge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 7-11
Cet article a éte moissonné depuis la source Math-Net.Ru
The formula for excitation coefficient of a wave, propagating along the edge of an elastic wedge is derived. The source of oscillations is a force concentrated in a point inside of the wedge. The case of harmonic oscillations is considered.
@article{ZNSL_2014_426_a1,
author = {V. M. Babich},
title = {On excitation coefficient of a~wave propagating along the edge of an elastic wedge},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--11},
year = {2014},
volume = {426},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/}
}
V. M. Babich. On excitation coefficient of a wave propagating along the edge of an elastic wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 7-11. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/
[1] S. V. Biryukov, Yu. V. Gulyaev, V. V. Krylov, V. P. Plesskii, Poverkhnostnye akusticheskie volny v neodnorodnykh sredakh, Nauka, M., 1991
[2] A. V. Shanin, “Otrazhenie klinovoi mody vysokogo poryadka ot tortsa ostrougolnogo uprugogo klina”, Akusticheskii zh., 44:1 (1998), 101–105
[3] A. V. Shanin, “Vozbuzhdenie i rasseyanie klinovoi volny v uprugom kline s uglom raskryva, blizkim k $180^\circ$”, Akusticheskii zh., 43:3 (1997), 402–408
[4] I. V. Kamotskii, “O poverkhnostnoi volne beguschei vdol rebra uprugogo klina”, Algebra i Analiz, 20:1 (2008), 86–92 | MR | Zbl
[5] P. E. Lagasse, “Analysis of a dispersionfree guides for elastic waves”, Electron Lett., 8:15 (1972), 372–373 | DOI