On excitation coefficient of a wave propagating along the edge of an elastic wedge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 7-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The formula for excitation coefficient of a wave, propagating along the edge of an elastic wedge is derived. The source of oscillations is a force concentrated in a point inside of the wedge. The case of harmonic oscillations is considered.
@article{ZNSL_2014_426_a1,
     author = {V. M. Babich},
     title = {On excitation coefficient of a~wave propagating along the edge of an elastic wedge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--11},
     year = {2014},
     volume = {426},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - On excitation coefficient of a wave propagating along the edge of an elastic wedge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 7
EP  - 11
VL  - 426
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/
LA  - ru
ID  - ZNSL_2014_426_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T On excitation coefficient of a wave propagating along the edge of an elastic wedge
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 7-11
%V 426
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/
%G ru
%F ZNSL_2014_426_a1
V. M. Babich. On excitation coefficient of a wave propagating along the edge of an elastic wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 7-11. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/

[1] S. V. Biryukov, Yu. V. Gulyaev, V. V. Krylov, V. P. Plesskii, Poverkhnostnye akusticheskie volny v neodnorodnykh sredakh, Nauka, M., 1991

[2] A. V. Shanin, “Otrazhenie klinovoi mody vysokogo poryadka ot tortsa ostrougolnogo uprugogo klina”, Akusticheskii zh., 44:1 (1998), 101–105

[3] A. V. Shanin, “Vozbuzhdenie i rasseyanie klinovoi volny v uprugom kline s uglom raskryva, blizkim k $180^\circ$”, Akusticheskii zh., 43:3 (1997), 402–408

[4] I. V. Kamotskii, “O poverkhnostnoi volne beguschei vdol rebra uprugogo klina”, Algebra i Analiz, 20:1 (2008), 86–92 | MR | Zbl

[5] P. E. Lagasse, “Analysis of a dispersionfree guides for elastic waves”, Electron Lett., 8:15 (1972), 372–373 | DOI