On excitation coefficient of a~wave propagating along the edge of an elastic wedge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 7-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The formula for excitation coefficient of a wave, propagating along the edge of an elastic wedge is derived. The source of oscillations is a force concentrated in a point inside of the wedge. The case of harmonic oscillations is considered.
@article{ZNSL_2014_426_a1,
     author = {V. M. Babich},
     title = {On excitation coefficient of a~wave propagating along the edge of an elastic wedge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--11},
     publisher = {mathdoc},
     volume = {426},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - On excitation coefficient of a~wave propagating along the edge of an elastic wedge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 7
EP  - 11
VL  - 426
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/
LA  - ru
ID  - ZNSL_2014_426_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T On excitation coefficient of a~wave propagating along the edge of an elastic wedge
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 7-11
%V 426
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/
%G ru
%F ZNSL_2014_426_a1
V. M. Babich. On excitation coefficient of a~wave propagating along the edge of an elastic wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 44, Tome 426 (2014), pp. 7-11. http://geodesic.mathdoc.fr/item/ZNSL_2014_426_a1/