Free boundary problem of magnetohydrodynamics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 149-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a free boundary problem governing the motion of a finite isolated mass of a viscous incompressible electrically conducting fluid in vacuum. Media is moving under the action of magnetic field and volume forces. We prove solvability of this free boundary problem in an infinite time interval under the additional smallness assumptions imposed on initial data and the external forces.
@article{ZNSL_2014_425_a9,
     author = {E. V. Frolova},
     title = {Free boundary problem of magnetohydrodynamics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--178},
     year = {2014},
     volume = {425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a9/}
}
TY  - JOUR
AU  - E. V. Frolova
TI  - Free boundary problem of magnetohydrodynamics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 149
EP  - 178
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a9/
LA  - en
ID  - ZNSL_2014_425_a9
ER  - 
%0 Journal Article
%A E. V. Frolova
%T Free boundary problem of magnetohydrodynamics
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 149-178
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a9/
%G en
%F ZNSL_2014_425_a9
E. V. Frolova. Free boundary problem of magnetohydrodynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 149-178. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a9/

[1] O. A. Ladyzhenskaya, V. A. Solonnikov, “Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Trudy mat. Inst. Steklov, 59, 1960, 115–173 | MR

[2] O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics”, Zap. Nauchn. Sem. LOMI, 38, 1973, 46–93 | MR | Zbl

[3] M. Padula, V. A. Solonnikov, “On the free boundary problem of magnethydrodynamics”, Zap. Nauchn. Sem. POMI, 385, 2010, 135–186 | MR

[4] V. A. Solonnikov, “On the stability of uniformly rotating liquid in a weak magnetic field”, Problemy Mat. Anal., 57, 2011, 165–191 | MR | Zbl

[5] S. Mosconi, V. A. Solonnikov, “On a problem of magnetohydrodinamics in a multi-connected domain”, Nonlinear analysis, 74:2 (2010), 462–478 | DOI | MR

[6] V. A. Solonnikov, “Free boundary problems of magnetohydrodynamics in multi-connected domains”, Interfaces and Free Boundaries, 14 (2012), 569–602 | DOI | MR | Zbl

[7] V. A. Solonnikov, E. V. Frolova, “Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval”, Zap. Nauchn. Sem. POMI, 410, 2013, 131–167 | MR | Zbl

[8] M. Padula, V. A. Solonnikov, On stability of equilibrium figures of a uniformly rotating liquid drop in $n$-dimensional space, RIMS Kokyuroku Bessatsu, B1, 2007 | MR

[9] M. Padula, V. A. Solonnikov, On Raileigh-Teylor stability, Annali dell University di Ferrara, 45, 2000

[10] V. A. Solonnikov, On the stability of uniformly rotating viscous incompressible self-gravitating fluid, Beijing, April 2009 | MR

[11] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equations”, Algebra i Analiz, 22:6 (2010), 235–269 | MR | Zbl