@article{ZNSL_2014_425_a9,
author = {E. V. Frolova},
title = {Free boundary problem of magnetohydrodynamics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--178},
year = {2014},
volume = {425},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a9/}
}
E. V. Frolova. Free boundary problem of magnetohydrodynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 149-178. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a9/
[1] O. A. Ladyzhenskaya, V. A. Solonnikov, “Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Trudy mat. Inst. Steklov, 59, 1960, 115–173 | MR
[2] O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics”, Zap. Nauchn. Sem. LOMI, 38, 1973, 46–93 | MR | Zbl
[3] M. Padula, V. A. Solonnikov, “On the free boundary problem of magnethydrodynamics”, Zap. Nauchn. Sem. POMI, 385, 2010, 135–186 | MR
[4] V. A. Solonnikov, “On the stability of uniformly rotating liquid in a weak magnetic field”, Problemy Mat. Anal., 57, 2011, 165–191 | MR | Zbl
[5] S. Mosconi, V. A. Solonnikov, “On a problem of magnetohydrodinamics in a multi-connected domain”, Nonlinear analysis, 74:2 (2010), 462–478 | DOI | MR
[6] V. A. Solonnikov, “Free boundary problems of magnetohydrodynamics in multi-connected domains”, Interfaces and Free Boundaries, 14 (2012), 569–602 | DOI | MR | Zbl
[7] V. A. Solonnikov, E. V. Frolova, “Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval”, Zap. Nauchn. Sem. POMI, 410, 2013, 131–167 | MR | Zbl
[8] M. Padula, V. A. Solonnikov, On stability of equilibrium figures of a uniformly rotating liquid drop in $n$-dimensional space, RIMS Kokyuroku Bessatsu, B1, 2007 | MR
[9] M. Padula, V. A. Solonnikov, On Raileigh-Teylor stability, Annali dell University di Ferrara, 45, 2000
[10] V. A. Solonnikov, On the stability of uniformly rotating viscous incompressible self-gravitating fluid, Beijing, April 2009 | MR
[11] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equations”, Algebra i Analiz, 22:6 (2010), 235–269 | MR | Zbl