Liouville theorem for 2D Navier–Stokes equations in half space
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 137-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Liouville type theorem for mild bounded ancient solutions to the Navier–Stokes system in a half plane has been proven provided that a certain scale invariant quantity is bounded.
@article{ZNSL_2014_425_a8,
     author = {G. Seregin},
     title = {Liouville theorem for {2D} {Navier{\textendash}Stokes} equations in half space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--148},
     year = {2014},
     volume = {425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a8/}
}
TY  - JOUR
AU  - G. Seregin
TI  - Liouville theorem for 2D Navier–Stokes equations in half space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 137
EP  - 148
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a8/
LA  - en
ID  - ZNSL_2014_425_a8
ER  - 
%0 Journal Article
%A G. Seregin
%T Liouville theorem for 2D Navier–Stokes equations in half space
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 137-148
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a8/
%G en
%F ZNSL_2014_425_a8
G. Seregin. Liouville theorem for 2D Navier–Stokes equations in half space. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 137-148. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a8/

[1] Y. Giga, “Remarks on a Liouville problem with boundary for the Stokes and the Navier–Stokes equations”, Discrete and Continuous Dynamical Systems, Ser. S, 6 (2013), 1277–1289 | DOI | MR | Zbl

[2] H. Jia, G. Seregin, V. Sverak, “Liouville theorems in unbounded domains for the time-dependent stokes system”, J. Math. Phys., 53 (2012), 115604 | DOI | MR | Zbl

[3] H. Jia, G. Seregin, V. Sverak, “A Liouville theorem for the Stokes system in half-space”, Zap Nauchn. Seminar. POMI, 410, 2013, 25–35 | MR | Zbl

[4] G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, “Liouville theorems for Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl

[5] G. Seregin, V. Sverak, “On Type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Communications in PDE's, 34 (2009), 171–201 | DOI | MR | Zbl

[6] G. Seregin, V. Sverak, “Rescalings at possible singularities of Navier–Stokes equations in half space”, St. Petersburg Math. J., 25:5 (2014), 815–833 ; arXiv: 1302.0141 | DOI | MR | Zbl

[7] V. A. Solonnikov, “On nonstationary Stokes problem and Navier–Stokes problem in a half space with initial data nondecreasing at infinity”, J. Math. Sci., 114:5 (2003), 1726–1740 | DOI | MR | Zbl