@article{ZNSL_2014_425_a8,
author = {G. Seregin},
title = {Liouville theorem for {2D} {Navier{\textendash}Stokes} equations in half space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--148},
year = {2014},
volume = {425},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a8/}
}
G. Seregin. Liouville theorem for 2D Navier–Stokes equations in half space. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 137-148. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a8/
[1] Y. Giga, “Remarks on a Liouville problem with boundary for the Stokes and the Navier–Stokes equations”, Discrete and Continuous Dynamical Systems, Ser. S, 6 (2013), 1277–1289 | DOI | MR | Zbl
[2] H. Jia, G. Seregin, V. Sverak, “Liouville theorems in unbounded domains for the time-dependent stokes system”, J. Math. Phys., 53 (2012), 115604 | DOI | MR | Zbl
[3] H. Jia, G. Seregin, V. Sverak, “A Liouville theorem for the Stokes system in half-space”, Zap Nauchn. Seminar. POMI, 410, 2013, 25–35 | MR | Zbl
[4] G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, “Liouville theorems for Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR | Zbl
[5] G. Seregin, V. Sverak, “On Type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Communications in PDE's, 34 (2009), 171–201 | DOI | MR | Zbl
[6] G. Seregin, V. Sverak, “Rescalings at possible singularities of Navier–Stokes equations in half space”, St. Petersburg Math. J., 25:5 (2014), 815–833 ; arXiv: 1302.0141 | DOI | MR | Zbl
[7] V. A. Solonnikov, “On nonstationary Stokes problem and Navier–Stokes problem in a half space with initial data nondecreasing at infinity”, J. Math. Sci., 114:5 (2003), 1726–1740 | DOI | MR | Zbl