On the mathematical analysis of thick fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 117-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In chemical engineering models, shear-thickening or dilatant fluids converge in the limit case to a class of incompressible fluids with a maximum admissible shear rate, the so-called thick fluids. These non-Newtonian fluids may be obtained, in particular, as the power limit of Ostwald-de Waele fluids, and may be formulated as a new class of evolution variational inequalities, in which the shear rate is bounded by a positive constant or, more generally, by a bounded positive function. We prove the existence, uniqueness and continuous dependence of solutions to this general class of thick fluids with variable threshold on the absolute value of the deformation rate tensor, which solutions belong to a time dependent convex set. For sufficiently large viscosity, we also show the asymptotic stabilization towards the unique steady state.
@article{ZNSL_2014_425_a7,
     author = {J.-F. Rodrigues},
     title = {On the mathematical analysis of thick fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--136},
     year = {2014},
     volume = {425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a7/}
}
TY  - JOUR
AU  - J.-F. Rodrigues
TI  - On the mathematical analysis of thick fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 117
EP  - 136
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a7/
LA  - en
ID  - ZNSL_2014_425_a7
ER  - 
%0 Journal Article
%A J.-F. Rodrigues
%T On the mathematical analysis of thick fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 117-136
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a7/
%G en
%F ZNSL_2014_425_a7
J.-F. Rodrigues. On the mathematical analysis of thick fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 117-136. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a7/

[1] G. Aronsson, L. C. Evans, Y. Wu, “Fast/slow diffusion and growing sandpiles”, J. Differential Equations, 131 (1996), 304–335 | DOI | MR | Zbl

[2] H. A. Barnes, “Shear-Thickening (“Dilatancy”) in Suspensions on Nonaggregating Solid Particles Dispersed in Newtonian Liquids”, J. Rheology, 33:2 (1989), 329–366 | DOI

[3] T. Bhattacharya, E. DiBenedetto, J. J. Manfredi, “Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems”, Rend. Sem. Mat. Univ. Politec. Torino, 47, Special Issue (1989), 15–68 | MR

[4] D. Breit, L. Diening, “Sharp Conditions for Korn Inequalities in Orlicz Spaces”, J. Math. Fluid Mech., 14 (2012), 565–573 | DOI | MR | Zbl

[5] R. P. Chhabra, J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, second ed., Butterworth-Heinemann, Oxford, 2008

[6] J. C. De los Reyes, G. Stadler, A nonsmooth model for discontinuous shear thickening fluids: analysis and numerical solution, Report 12-42, UT Austin ICES, 2012; Interfaces and Free Boundaries, 16 (2014), 575–602 | DOI | MR

[7] L. Diening, M. Ruzicka, J. Wolf, “Existence of weak solutions for unsteady motions of generalized”, Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9:1 (2010), 1–46 | MR | Zbl

[8] G. Duvaut, J. L. Lions, Les Inequations en Mecanique et en Physique, Dunod, Paris, 1972 | MR | Zbl

[9] M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., 1749, 2000 | DOI | MR | Zbl

[10] C. Gerhardt, “On the Existence and Uniqueness of a Warpening Function in the Elastic-plastic Torsion of a Cylindrical Bar with a Multiply Connected Cross Section”, Proceedings of the Joint Symposium IUTAM/IMU (Marseille, 1975), Lect. Notes Math., 503, eds. A. Dold, B. Eckmnann, P. Germain, B. Nayroles, 1976, 328–342 | DOI | MR | Zbl

[11] P. Gwiazda, J. Malek, A. Swierczewska, “On flows of an incompressible fluid with a discontinuous power-law-like rheology”, Comput. Math. Appl., 53 (2007), 531–546 | DOI | MR | Zbl

[12] A. Haraux, Nonlinear Evolution Equations. Global behavior of solutions, Lect. Notes Math., 841, 1981 | MR | Zbl

[13] O. A. Ladyzhenskaya, “New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems”, Boundary value problems of mathematical physics, Part 5, Trudy Mat. Inst. Steklov, 102, 1967, 85–104 | MR | Zbl

[14] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York, 1969 | MR | Zbl

[15] Y. S. Lee, E. D. Wetzel, N. J. Wagner, “The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid”, J. Materials Sci., 38 (2004), 2825–2833 | DOI

[16] J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969 | MR | Zbl

[17] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, Chapman Hall, London, 1996 | MR | Zbl

[18] J. Málek, K. R. Rajagopal, “Mathematical issues concerning the Navier–Stokes equations and some of its generalizations”, Evolutionary equations, v. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, 371–459 | MR | Zbl

[19] J. Mewis, N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, Cambridge, 2012

[20] F. Miranda, J. F. Rodrigues, On a Variational Inequality for Incompressible Non-Newtonian Thick Flows (to appear)

[21] F. Miranda, J. F. Rodrigues, L. Santos, “On a $p$-curl system arising in electromagnetism”, Discrete Contin. Dyn. Syst. Ser. S, 5:3 (2012), 605–629 | MR | Zbl

[22] L. Nirenberg, “An Extended Interpolation Inequality”, Ann. Scuola Norm. Pisa Cl. Sci. 3rd serie, 20:4 (1966), 733–737 | MR | Zbl

[23] L. Prigozhin, “Sandpiles and river networks: extended systems with non-local interactions”, Phys. Rev. E, 49 (1994), 1161–1167 | DOI | MR

[24] J. F. Rodrigues, L. Santos, “A parabolic quasivariational inequality arising in a superconductivity model”, Ann. Scuola Norm. Pisa Cl. Sci., 29 (2000), 153–169 | MR | Zbl

[25] J. F. Rodrigues, L. Santos, “Quasivariational solutions for first order quasilinear equations with gradient constraint”, Arch. Ration. Mech. Anal., 205:2 (2012), 493–514 | DOI | MR | Zbl

[26] L. Santos, “A diffusion problem with gradient constraint and evolutive Dirichlet condition”, Portugaliae Math., 48:4 (1991), 441–468 | MR | Zbl

[27] L. Santos, “Variational problems with non-constant gradient constraints”, Portugaliae Math., 59 (2002), 205–248 | MR | Zbl

[28] S. A. Sazhenkov, “The Problem of Motion of Rigid Bodies in a Non-Newtonean Incompressible Fluid”, Siberian Math. J., 39:1 (1998), 126–140 | DOI | MR | Zbl

[29] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl., 146:4 (1987), 65–96 | MR | Zbl

[30] V. V. Shelukhin, “Bingham viscoplastic as a limit of non-Newtonian fluids”, J. Math. Fluid Mech., 4:2 (2002), 109–127 | DOI | MR | Zbl

[31] N. J. Wagner, J. F. Brady, “Shear thickening in colloidal dispersions”, Physics Today, 62:10, October (2009), 27–32 | DOI