Estimates of the distance to the set of divergence free fields
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 99-116

Voir la notice de l'article provenant de la source Math-Net.Ru

We are concerned with computable estimates of the distance to the set of divergence free fields, which are necessary for quantitative analysis of mathematical models of incompressible media (e.g., Stokes, Oseen, and Navier–Stokes problems). The distance is measured in terms of $L^q$ norm of the gradient with $q\in(1,+\infty)$. For $q=2$, these estimates follow from the so-called inf-sup condition (or Aziz–Babuška–Ladyzhenskaya–Solonnikov inequality) and require sharp estimates of the respective constant, which are known only for a very limited amount of cases. We suggest a way to bypass this difficulty and show that for a vide class of domains (and different boundary conditions) computable estimates of the distance to the set of divergence free field can be presented in the form, which uses inf-sup constants for certain basic problems. In the last section, these estimates are applied to problems in the theory of viscous incompressible fluids. They generate fully computable bounds of the distance to generalized solutions of the problems considered.
@article{ZNSL_2014_425_a6,
     author = {S. Repin},
     title = {Estimates of the distance to the set of divergence free fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {425},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a6/}
}
TY  - JOUR
AU  - S. Repin
TI  - Estimates of the distance to the set of divergence free fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 99
EP  - 116
VL  - 425
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a6/
LA  - en
ID  - ZNSL_2014_425_a6
ER  - 
%0 Journal Article
%A S. Repin
%T Estimates of the distance to the set of divergence free fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 99-116
%V 425
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a6/
%G en
%F ZNSL_2014_425_a6
S. Repin. Estimates of the distance to the set of divergence free fields. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 99-116. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a6/