On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 86-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Spectral asymptotics of the weighted Neumann problem for the Sturm–Liouville equation is considered. The weight is assumed to be the distributional derivative of a self-similar generalized Cantor type function. The spectrum is shown to have a periodicity property for a wide class of Cantor type self-similar functions. The weaker “quasi-periodicity” property is demonstrated under certain mixed boundary value conditions. This allows for a more precise description of the main term of the eigenvalue counting function asymptotics. Previous results by A. A. Vladimirov and I. A. Sheipak are generalized.
@article{ZNSL_2014_425_a5,
     author = {N. V. Rastegaev},
     title = {On spectral asymptotics of the {Neumann} problem for the {Sturm{\textendash}Liouville} equation with self-similar generalized {Cantor} type weight},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--98},
     year = {2014},
     volume = {425},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/}
}
TY  - JOUR
AU  - N. V. Rastegaev
TI  - On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 86
EP  - 98
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/
LA  - ru
ID  - ZNSL_2014_425_a5
ER  - 
%0 Journal Article
%A N. V. Rastegaev
%T On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 86-98
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/
%G ru
%F ZNSL_2014_425_a5
N. V. Rastegaev. On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 86-98. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/

[1] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[2] A. A. Vladimirov, I. A. Sheipak, “O zadache Neimana dlya uravneniya Shturma–Liuvillya s samopodobnym vesom kantorovskogo tipa”, Funktsionalnyi analiz i ego prilozheniya, 47:4 (2013), 18–29 | DOI | MR

[3] M. S. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd. “Lan”, 2010

[4] M. G. Krein, “Opredelenie plotnosti neodnorodnoi simmetrichnoi struny po spektru”, DAN SSSR, 76:3 (1951), 345–348 | MR

[5] M. S. Birman, M. Z. Solomyak, “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR, ser. matem., 34:5 (1970), 1142–1158 | MR | Zbl

[6] V. V. Borzov, “O kolichestvennykh kharakteristikakh singulyarnykh mer”, Problemy matem. fiziki, 4, 1970, 42–47 | MR | Zbl

[7] T. Fujita, “A fractional dimention, self-similarity and a generalized diffusion operator”, Taniguchi Symp. PMMP, Katata, 1985, 83–90 | MR

[8] I. Hong, T. Uno, “Some consideration of asymptotic distribution of eigenvalues for the equation $d^2u/dx^2+\lambda\rho(x)u=0$”, Japanese Journ. Math., 29 (1959), 152–164 | MR | Zbl

[9] H. P. McKean, D. B. Ray, “Spectral distribution of a differential operator”, Duke Math. Journ., 29 (1962), 281–292 | DOI | MR | Zbl

[10] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys., 158 (1991), 93–125 | DOI | MR

[11] A. I. Nazarov, “Logarifmicheskaya asimptotika malykh uklonenii dlya nekotorykh gaussovskikh protsessov v $L_2$-norme otnositelno samopodobnoi mery”, Zap. nauch. semin. POMI, 311, 2004, 190–213 | MR | Zbl

[12] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sbornik, 197:11 (2006), 13–30 | DOI | MR | Zbl

[13] A. A. Vladimirov, Ostsillyatsionnyi metod v zadache o spektre differentsialnogo operatora chetvërtogo poryadka s samopodobnym vesom, arXiv: 1107.4791

[14] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl

[15] J.|E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[16] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zhurnal vych. matem. i matem. fiz., 49:9 (2009), 1609–1621 | MR | Zbl

[17] A. I. Nazarov, “Ob odnom semeistve preobrazovanii gaussovskikh sluchainykh funktsii”, Teoriya veroyatnostei i ee primeneniya, 54:2 (2009), 209–225 | DOI | MR | Zbl