On spectral asymptotics of the Neumann problem for the Sturm--Liouville equation with self-similar generalized Cantor type weight
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 86-98
Voir la notice de l'article provenant de la source Math-Net.Ru
Spectral asymptotics of the weighted Neumann problem for the Sturm–Liouville equation is considered. The weight is assumed to be the distributional derivative of a self-similar generalized Cantor type function. The spectrum is shown to have a periodicity property for a wide class of Cantor type self-similar functions. The weaker “quasi-periodicity” property is demonstrated under certain mixed boundary value conditions. This allows for a more precise description of the main term of the eigenvalue counting function asymptotics. Previous results by A. A. Vladimirov and I. A. Sheipak are generalized.
@article{ZNSL_2014_425_a5,
author = {N. V. Rastegaev},
title = {On spectral asymptotics of the {Neumann} problem for the {Sturm--Liouville} equation with self-similar generalized {Cantor} type weight},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {86--98},
publisher = {mathdoc},
volume = {425},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/}
}
TY - JOUR AU - N. V. Rastegaev TI - On spectral asymptotics of the Neumann problem for the Sturm--Liouville equation with self-similar generalized Cantor type weight JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 86 EP - 98 VL - 425 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/ LA - ru ID - ZNSL_2014_425_a5 ER -
%0 Journal Article %A N. V. Rastegaev %T On spectral asymptotics of the Neumann problem for the Sturm--Liouville equation with self-similar generalized Cantor type weight %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 86-98 %V 425 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/ %G ru %F ZNSL_2014_425_a5
N. V. Rastegaev. On spectral asymptotics of the Neumann problem for the Sturm--Liouville equation with self-similar generalized Cantor type weight. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 86-98. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a5/