Regularity of electromagnetic fields in convex domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 55-85
Voir la notice de l'article provenant de la source Math-Net.Ru
The “strong” Maxwell operator defined on the fields from the Sobolev space $W_2^1$, and the “weak” Maxwell operator defined on the natural domain are considered. It is shown, that in the convex domains, and more generally, in the domains which are locally $(W^2_3\cap W^1_\infty)$-diffeomorphic to convex ones, the “strong” and the “weak” Maxwell operators coincide.
@article{ZNSL_2014_425_a4,
author = {A. Prohorov and N. Filonov},
title = {Regularity of electromagnetic fields in convex domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--85},
publisher = {mathdoc},
volume = {425},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/}
}
A. Prohorov; N. Filonov. Regularity of electromagnetic fields in convex domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 55-85. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/