Regularity of electromagnetic fields in convex domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 55-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The “strong” Maxwell operator defined on the fields from the Sobolev space $W_2^1$, and the “weak” Maxwell operator defined on the natural domain are considered. It is shown, that in the convex domains, and more generally, in the domains which are locally $(W^2_3\cap W^1_\infty)$-diffeomorphic to convex ones, the “strong” and the “weak” Maxwell operators coincide.
@article{ZNSL_2014_425_a4,
     author = {A. Prohorov and N. Filonov},
     title = {Regularity of electromagnetic fields in convex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--85},
     year = {2014},
     volume = {425},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/}
}
TY  - JOUR
AU  - A. Prohorov
AU  - N. Filonov
TI  - Regularity of electromagnetic fields in convex domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 55
EP  - 85
VL  - 425
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/
LA  - ru
ID  - ZNSL_2014_425_a4
ER  - 
%0 Journal Article
%A A. Prohorov
%A N. Filonov
%T Regularity of electromagnetic fields in convex domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 55-85
%V 425
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/
%G ru
%F ZNSL_2014_425_a4
A. Prohorov; N. Filonov. Regularity of electromagnetic fields in convex domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 55-85. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/

[1] G. S. Alberti, Y. Capdeboscq, “Elliptic regularity theory applied to time harmonic anisotropic Maxwell's equations with less than Lipschitz complex coefficients”, SIAM J. Math. Anal., 46:1 (2014), 998–1016 | DOI | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Operator Maksvella v oblastyakh s negladkoi granitsei”, Sib. mat. zhurnal, 28:1 (1987), 23–36 | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Postroenie v kusochno gladkoi oblasti funktsii klassa $H^2$ po znacheniyu konormalnoi proizvodnoi”, Zap. nauch. sem. LOMI, 163, 1987, 17–28 | MR | Zbl

[4] M. Sh. Birman, M. Z. Solomyak, “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i Analiz, 1:1 (1989), 96–110 | MR | Zbl

[5] M. Sh. Birman, M. Z. Solomyak, “Glavnye osobennosti elektricheskoi sostavlyayuschei elektromagnitnogo polya v oblastyakh s ekranami”, Algebra i Analiz, 5:1 (1993), 143–159 | MR | Zbl

[6] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994 | MR | Zbl

[7] M. N. Demchenko, N. D. Filonov, “Spectral Asymptotics of the Maxwell Operator on Lipschitz Manifolds with Boundary”, Amer. Math. Soc. Transl., 225:2 (2008), 73–90 | MR | Zbl

[8] N. Filonov, “Glavnye osobennosti magnitnoi sostavlyayuschei elektromagnitnogo polya v oblastyakh s ekranami”, Algebra i Analiz, 8:3 (1996), 212–236 | MR | Zbl

[9] N. Filonov, “Glavnye osobennosti magnitnoi sostavlyayuschei polya v rezonatorakh s granitsei zadannogo klassa gladkosti”, Algebra i Analiz, 9:2 (1997), 241–255 | MR | Zbl

[10] K. O. Friedrichs, “Differential forms on Riemannian manifolds”, Comm. Pure Appl. Math., 8 (1955), 551–590 | DOI | MR | Zbl

[11] M. P. Gaffney, “Hilbert Space Methods in the Theory of Harmonic Integrals”, Transactions Amer. Math. Soc., 78:2 (1955), 426–444 | DOI | MR | Zbl

[12] J. Gobert, “Sur une inégalité de coercivité”, J. Math. Anal. Appl., 36:3 (1971), 518–528 | DOI | MR | Zbl

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman, Boston–London–Melbourne, 1985 | MR

[14] S. Kaizu, F. Kikuchi, “An Imbedding Theorem for a Hilbert Space Appearing in Electromagnetics”, Scientific Papers of the College of Arts and Sciences, University of Tokyo, 36 (1986), 81–89 | MR

[15] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[16] R. Leis, “Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien”, Math. Z., 106:3 (1968), 213–224 | DOI | MR

[17] V. G. Mazya, T. O. Shaposhnikova, Multiplikatory v prostranstvakh differentsiruemykh funktsii, LGU, L., 1986 | MR

[18] M. Mitrea, “Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domain”, Forum Math., 13:4 (2001), 531–567 | DOI | MR | Zbl

[19] R. Picard, “An Elementary Proof for a Compact Imbedding Result in Generalized Electromagnetic Theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl

[20] J. Saranen, “On an inequality of Friedriechs”, Math. Scand., 51 (1982), 310–322 | MR | Zbl

[21] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[22] C. Weber, “Regularity Theorems for Maxwell's Equations”, Math. Meth. Appl. Sci., 3 (1981), 523–536 | DOI | MR | Zbl

[23] N. Weck, “Maxwell's Boundary Value Problem on Riemannian Manifolds with Nonsmooth Boundaries”, J. Math. Anal. and Appl., 46 (1974), 410–437 | DOI | MR | Zbl