@article{ZNSL_2014_425_a4,
author = {A. Prohorov and N. Filonov},
title = {Regularity of electromagnetic fields in convex domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--85},
year = {2014},
volume = {425},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/}
}
A. Prohorov; N. Filonov. Regularity of electromagnetic fields in convex domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Tome 425 (2014), pp. 55-85. http://geodesic.mathdoc.fr/item/ZNSL_2014_425_a4/
[1] G. S. Alberti, Y. Capdeboscq, “Elliptic regularity theory applied to time harmonic anisotropic Maxwell's equations with less than Lipschitz complex coefficients”, SIAM J. Math. Anal., 46:1 (2014), 998–1016 | DOI | MR | Zbl
[2] M. Sh. Birman, M. Z. Solomyak, “Operator Maksvella v oblastyakh s negladkoi granitsei”, Sib. mat. zhurnal, 28:1 (1987), 23–36 | MR | Zbl
[3] M. Sh. Birman, M. Z. Solomyak, “Postroenie v kusochno gladkoi oblasti funktsii klassa $H^2$ po znacheniyu konormalnoi proizvodnoi”, Zap. nauch. sem. LOMI, 163, 1987, 17–28 | MR | Zbl
[4] M. Sh. Birman, M. Z. Solomyak, “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i Analiz, 1:1 (1989), 96–110 | MR | Zbl
[5] M. Sh. Birman, M. Z. Solomyak, “Glavnye osobennosti elektricheskoi sostavlyayuschei elektromagnitnogo polya v oblastyakh s ekranami”, Algebra i Analiz, 5:1 (1993), 143–159 | MR | Zbl
[6] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994 | MR | Zbl
[7] M. N. Demchenko, N. D. Filonov, “Spectral Asymptotics of the Maxwell Operator on Lipschitz Manifolds with Boundary”, Amer. Math. Soc. Transl., 225:2 (2008), 73–90 | MR | Zbl
[8] N. Filonov, “Glavnye osobennosti magnitnoi sostavlyayuschei elektromagnitnogo polya v oblastyakh s ekranami”, Algebra i Analiz, 8:3 (1996), 212–236 | MR | Zbl
[9] N. Filonov, “Glavnye osobennosti magnitnoi sostavlyayuschei polya v rezonatorakh s granitsei zadannogo klassa gladkosti”, Algebra i Analiz, 9:2 (1997), 241–255 | MR | Zbl
[10] K. O. Friedrichs, “Differential forms on Riemannian manifolds”, Comm. Pure Appl. Math., 8 (1955), 551–590 | DOI | MR | Zbl
[11] M. P. Gaffney, “Hilbert Space Methods in the Theory of Harmonic Integrals”, Transactions Amer. Math. Soc., 78:2 (1955), 426–444 | DOI | MR | Zbl
[12] J. Gobert, “Sur une inégalité de coercivité”, J. Math. Anal. Appl., 36:3 (1971), 518–528 | DOI | MR | Zbl
[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman, Boston–London–Melbourne, 1985 | MR
[14] S. Kaizu, F. Kikuchi, “An Imbedding Theorem for a Hilbert Space Appearing in Electromagnetics”, Scientific Papers of the College of Arts and Sciences, University of Tokyo, 36 (1986), 81–89 | MR
[15] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[16] R. Leis, “Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien”, Math. Z., 106:3 (1968), 213–224 | DOI | MR
[17] V. G. Mazya, T. O. Shaposhnikova, Multiplikatory v prostranstvakh differentsiruemykh funktsii, LGU, L., 1986 | MR
[18] M. Mitrea, “Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domain”, Forum Math., 13:4 (2001), 531–567 | DOI | MR | Zbl
[19] R. Picard, “An Elementary Proof for a Compact Imbedding Result in Generalized Electromagnetic Theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl
[20] J. Saranen, “On an inequality of Friedriechs”, Math. Scand., 51 (1982), 310–322 | MR | Zbl
[21] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[22] C. Weber, “Regularity Theorems for Maxwell's Equations”, Math. Meth. Appl. Sci., 3 (1981), 523–536 | DOI | MR | Zbl
[23] N. Weck, “Maxwell's Boundary Value Problem on Riemannian Manifolds with Nonsmooth Boundaries”, J. Math. Anal. and Appl., 46 (1974), 410–437 | DOI | MR | Zbl